TABLE OF CONTENTS

1. **The Changing Environmental Paradigm** ... 1
 - Introduction ... 1
 - Basic philosophical issue ... 1
 - Population and technology .. 2
 - Sustainability .. 3
 - Implications for the pulp and paper industry 4
 - Hierarchy approach .. 5
 - Discussion items .. 5

2. **Impact of Water Pollutants on the Pulp and Paper Industry** 7
 - Meaning of pollution .. 7
 - Definitions of pollutants .. 7
 - Oxygen-demanding substances 7
 - Biochemical oxygen demand .. 8
 - Chemical oxygen demand .. 10
 - Total organic carbon ... 10
 - Total oxygen demand .. 10
 - Disease-causing agents .. 11
 - Synthetic organic compounds 11
 - Detergents .. 12
 - Pesticides ... 12
 - Oils and greases .. 12
 - Industrial chemicals ... 12
 - Polychlorinated biphenyl compounds 13
 - Chloroform ... 14
 - Dioxin .. 14
 - Adsorbable organic halogens .. 16
 - Color ... 16
 - Endocrine disruptors ... 18
 - Plant nutrients .. 19
 - Inorganic chemicals and mineral substances 19
 - Sediments .. 20
 - Radioactive materials .. 21
 - Thermal pollution .. 21
 - Summary of pollution parameters and pollution load 21
 - Origin of raw waste load .. 21
 - Pulping ... 22
3. Bioassessment of the Aquatic System

Review of the effects of mill effluents on receiving waters

Background

Current issues relating to biologically treated mill effluents
Whole effluent toxicity testing
Field studies
Biocriteria
Fish reproduction studies
Bioaccumulation
Nutrients
Recent advances in monitoring techniques and procedures
Effluent monitoring
Environmental monitoring of receiving waters
Mill history, operations, and historical data
Effluent mixing zone delineation
Habitat and resource inventory
Supporting environmental variables
Sediment bioassays
Sampling design and statistical considerations
Effects on fish and fisheries resources
Biomarkers or bioindicators
Mesocosms and field bioassays
Invertebrate community survey
Bioaccumulative compounds and chemical tracers
Quality assurance and quality control
Data interpretation and data management
Summary and future issues
Discussion items

4. Mathematical Analysis of Water Pollution Effects on Lakes and Streams

Disposal into lakes
Complete mix model
Stratification
Dispersion in rivers
Algae effects
Aeration

5. Water Legislation

History
Environmental
Federal Water
Toxic Substances:
Safe Drink
Resources
Comprehensive
Federal Ins
Toxic Subs
Superfund
Hazardous
Federal Pol
Environment
Common
Regulatory
Multimedia
Summary
Cluster rules
Air regulation
Water quality
Great Lake
Canadian regulation
Environment
Discussion items

6. Pollution Impact

Cost optimization
Discharge history
Discussion items

7. Sampling

Sampling basis
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge deposits</td>
<td>69</td>
</tr>
<tr>
<td>Mathematical model of a river</td>
<td>70</td>
</tr>
<tr>
<td>Aquatic biology</td>
<td>72</td>
</tr>
<tr>
<td>Application of models</td>
<td>73</td>
</tr>
<tr>
<td>BASINS model</td>
<td>75</td>
</tr>
<tr>
<td>Lake Michigan model</td>
<td>77</td>
</tr>
<tr>
<td>Discussion Items</td>
<td>78</td>
</tr>
<tr>
<td>5. Water Legislation</td>
<td>81</td>
</tr>
<tr>
<td>History</td>
<td>81</td>
</tr>
<tr>
<td>Environmental agencies</td>
<td>82</td>
</tr>
<tr>
<td>Federal Water Pollution Control Act</td>
<td>83</td>
</tr>
<tr>
<td>Toxic Substances Legislation</td>
<td>87</td>
</tr>
<tr>
<td>Safe Drinking Water Act</td>
<td>87</td>
</tr>
<tr>
<td>Resources Conservation and Recovery Act</td>
<td>89</td>
</tr>
<tr>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
<td>90</td>
</tr>
<tr>
<td>Federal Insecticide, Fungicide, and Rodenticide Act</td>
<td>91</td>
</tr>
<tr>
<td>Toxic Substances Control Act</td>
<td>91</td>
</tr>
<tr>
<td>Superfund Amendments and Reauthorization Act</td>
<td>92</td>
</tr>
<tr>
<td>Hazardous Waste Operation and Emergency Response Standard</td>
<td>93</td>
</tr>
<tr>
<td>Federal Pollution Prevention Act of 1990</td>
<td>93</td>
</tr>
<tr>
<td>Environmental Leadership Program</td>
<td>93</td>
</tr>
<tr>
<td>Common Sense Initiative</td>
<td>94</td>
</tr>
<tr>
<td>Regulatory Reinvention Program</td>
<td>94</td>
</tr>
<tr>
<td>Multimedia Permitting</td>
<td>94</td>
</tr>
<tr>
<td>Summary</td>
<td>95</td>
</tr>
<tr>
<td>Cluster rule</td>
<td>95</td>
</tr>
<tr>
<td>Air regulations—Maximum achievable control technology</td>
<td>97</td>
</tr>
<tr>
<td>Water quality regulations and watershed management</td>
<td>98</td>
</tr>
<tr>
<td>Great Lakes Water Quality Initiative</td>
<td>99</td>
</tr>
<tr>
<td>Canadian regulations</td>
<td>99</td>
</tr>
<tr>
<td>Environmental effects monitoring regulations</td>
<td>100</td>
</tr>
<tr>
<td>Discussion items</td>
<td>100</td>
</tr>
<tr>
<td>6. Pollution Prevention</td>
<td>103</td>
</tr>
<tr>
<td>Cost optimization</td>
<td>103</td>
</tr>
<tr>
<td>Discharge history of the pulp and paper industry</td>
<td>104</td>
</tr>
<tr>
<td>Discussion items</td>
<td>105</td>
</tr>
<tr>
<td>7. Sampling and Conducting Mill Pollution Load Surveys</td>
<td>107</td>
</tr>
<tr>
<td>Sampling basics</td>
<td>107</td>
</tr>
</tbody>
</table>
BMP regulation and requirements ... 160
Development of the BMP regulation 160
Overview of BMP requirements .. 160
Schedule ... 161
Six Steps to Assemble a BMP Plan .. 162
Assembling the BMP team ... 162
Completing the key issues analysis and BMP terminology definitions ... 162
Sewer monitoring program development 171
Preparing the BMP plan .. 173
Spill event analysis and BMP training program 174
Using a BMP plan template .. 175
Summary ... 175
Discussion items .. 176

Semichemical pulping history .. 179
Need for water system modification .. 180
Modification of water systems ... 180
Spill prevention ... 181
Mill history .. 182
Technical problems .. 182
Benefits of system closure ... 182
Potential problems and solutions in zero discharge semichemical mills .. 182
Pulping system .. 183
Paper machine .. 183
General mill system ... 185
Washing .. 186
Chemical recovery ... 187
Conclusions ... 191
Discussion items ... 192

12. Groundwood, RMP, and TMP Process Modification 195
Groundwood .. 195
Refined mechanical pulp .. 195
Thermomechanical pulping .. 196
Sulfite pulping process modifications 200
Discussion items ... 201

13. Pulping and Bleaching Technologies for Improved Environmental Performance ... 203
Pulping ... 203
17. Storm Water Management at an Industrial Site

Introduction .. 301
Regulatory overview 301
Hydraulic considerations 302
Site drainage map .. 302
Nonstorm water discharges 302
Runoff volume estimation 303
Potential sources of contamination 303
Material handling .. 303
Material storage .. 304
Process areas .. 304
Best management practices 304
Employee training .. 305
Source controls .. 305
Storm water treatment 307
Storm water management plan 309
Site reconnaissance 309
Best management practice plan 311
Storm water monitoring 313
Nonstorm water evaluation 313
Wet weather visual storm water quality inspection 313
Chemical monitoring 313
Annual site compliance inspection 314
Conclusion .. 314
Discussion items .. 314

18. Primary Treatment: Suspended Solids Removal

Advantages of external treatment 317
Advantages of internal process modifications for pollution control ... 318
Suspended solids ... 318
Flow equalization ... 318
Sedimentation clarifiers 319
Settling theory ... 321
Discrete particle settling 321
Theoretical sedimentation tank 322
Flotation clarifiers .. 325
New developments .. .326
Discussion item .. .328

19. Secondary Aerobic Biological Treatment331
Secondary biological treatment system types331
Bacteria and other microorganisms in secondary treatment systems333
Bacterial kinetics336
Factors affecting bacterial growth338
 Nutrients and oxygen .. .338
 Temperature .. .339
 pH .. .339
 Toxicants339
Mathematical models for wastewater treatment systems339
 Mathematical model for an aerated stabilization basin339
 Mathematical model for an activated sludge system341
 Oxygen transfer345
 Sophisticated treatment plant mathematical modeling349
Industry experience with various biotreatment systems351
 Oxidation basin, stabilization pond, or lagoon351
 Aerated stabilization basin352
 Activated sludge .. .355
 Selector sections in the activated sludge process358
 Pure oxygen-activated sludge358
 Sequencing batch reactors .. .359
 Two-stage biotreatment systems360
 Oxidation ditch .. .360
 Roughing bio-filter .. .360
 Rotating biological contactor .. .361
 Natural treatment processes .. .361
Summary of biotreatment .. .363
Discussion Items .. .364

Introduction369
Applicability of anaerobic processes to pulp and paper wastewater370
 Biochemical and microbiological considerations370
 Wastewater characteristics and treating372
Factors to consider in applying anaerobic processes to treat pulp and paper wastewater375
 Treatment kinetics375
 Biogas production and composition377
Risk management ... 421
 History ... 421
 Risk management applied to dioxin from pulp bleaching 421
 Pollution prevention and risk reduction 421
 Risk/cost/benefit analysis ... 422
 Risk management plans .. 422
 Risk communication and stakeholder involvement 423
Ecological risk assessment .. 424
 Dioxin and sludge ... 424
 Great Lakes initiative .. 424
Summary and conclusions .. 425
Discussion items .. 425

22. Management of Residuals ... 429
Nature of sludge .. 429
Conditioning agents ... 433
Dewatering devices ... 433
 Lagoons ... 435
 Vacuum filters ... 435
 V presses (mechanical presses) 437
 Centrifuges ... 438
 Pressure filters .. 440
 Twin-wire presses .. 440
 Screw presses .. 442
Final disposal of dewatered sludge 444
 Incineration .. 445
 Landfilling .. 447
 Landfill cover material .. 448
 Land application ... 448
 Composting .. 450
 Strip mine land reclamation 450
 Additive to building materials and cement kilns 450
 Lightweight aggregate ... 451
 Absorbents ... 451
 High technology solutions 451
 Other wastes .. 451
 Legislation governing solid waste disposal 452
Discussion items .. 454
23. **Groundwater Pollution Control** .. 457

- Potential mill sources ... 457
- Storage tanks .. 457
- Surface impoundments .. 457
- Landfills .. 458
- Maintenance and drum storage areas .. 459
- Coal stockpiles .. 459

- Contaminant characterization .. 460
 - Groundwater sampling .. 461
 - Example sample collection procedure 462
 - Sample identification and shipment 463

- Analytical conditions ... 463

- Groundwater concepts ... 463
 - Aquifers, aquitards, and aquicludes 463
 - Zones of subsurface water .. 465

- Hydrologic properties of geologic media 466
 - Flow properties .. 466
 - Hydraulic gradient ... 468
 - Potentiometric surface map .. 469

- Introduction to risk evaluations .. 469
 - Risk assessment objectives .. 470
 - Identification of contaminants of concern 471
 - Exposure pathway and receptor evaluation 471
 - Estimating groundwater exposure concentrations 472
 - Toxicity assessment and risk characterization 472

- Groundwater remediation strategies .. 473
 - Bioremediation .. 473
 - Slurry walls and drains .. 473
 - Groundwater pumping and treatment 474

- Closing comments ... 477
- Discussion items ... 477

24. **Air Pollution: A Problem Without Boundaries** 479

- Problem without boundaries .. 479
- Health and amenity .. 479
- Health .. 480
- Limits to protect health .. 481
 - Meteorological considerations ... 481
- Specific air pollutants .. 482
 - Particulates .. 482

25. **Air Pollution** ..

- History of Air Pollution:
 - 1955–1963
 - 1963–1969
 - 1970–1977
 - 1977–1984
 - 1984–1991

- Current Air Pollution
 - The cluster
 - Meeting new challenges
 - EPA strategy
 - Compliance
 - Final Air Toxic:
 - Discussion items

26. **Pulp and Paper Industry** ..

- Introduction ..
- Origin of air pollution
 - Kraft pulping
 - Wood preparation
 - Pulp production
 - Pulp washing
 - Bleaching
 - Chemical recovery
 - Miscellaneous
 - Emission factors
 - Sulfite pulping
 - Chemical recovery
 - Emission factors
 - Semi-chemical
 - Emission factors
Oxides of sulfur ... 483
Total reduced sulfur compounds 483
Chlorine compounds 483
Ozone .. 483
Air toxic materials ... 484
MACT Standards promulgated under pulp and paper “cluster” rule 484
Discussion items .. 484

25. Air Pollution Legislation 487
History of Air Regulations 487
1955–1963 ... 487
1963–1969 ... 487
1970–1977 ... 488
1977–1984 ... 492
1984–1991 ... 495
Current Air Pollution Legislation 497
The cluster rule ... 497
Meeting new ozone and particulate matter air quality standards 498
EPA strategy for meeting revised air quality standards for particulate matter 498
Compliance assurance monitoring 499
Final Air Toxics Regulation for pulp and paper production 499
Discussion item ... 499

26. Pulp and Paper Air Pollution Problems 501
Introduction .. 501
Origin of air pollutants 501
Kraft pulping process 502
Wood preparation ... 502
Pulp production .. 503
Pulp washing, screening, and deknotting 504
Oxygen delignification 507
Bleaching .. 508
Chemical recovery ... 510
Miscellaneous sources 517
Emission factors .. 518
Sulfite pulping process 520
Chemical recovery ... 521
Emission factors .. 523
Semi-chemical pulping process 523
Emission factors .. 525
Mechanical pulping processes ... 525
Recovered paper pulping processes .. 526
Pulping of nonwood material .. 527
Papermaking .. 527
Steam and power generation .. 529
 Fossil fuels .. 529
 Wood residues .. 530
 Other nonfossil fuels ... 531
 Emission factors .. 531
Wastewater collection, handling, and treatment systems 531
Landfills .. 532
Discussion items ... 532

27. Air Pollution Control Equipment and Strategies 537
Particulate control equipment .. 537
 Inertial separators ... 537
 Scrubbers ... 540
 Mist pads ... 544
 Dry scrubbing ... 544
 Fabric filters ... 545
 Electrostatic precipitators ... 545
 Wet electrostatic precipitators ... 548
Odor control strategies and equipment 548
 Odor gas handling and management 550
 Odor gas incineration ... 550
 Black liquor oxidation .. 551
 Noncontact recovery furnaces .. 554
 In-plant process control for control of odor emissions 554
Sorting the alternatives ... 556
Costs ... 558
Retrofitting environmental control .. 558
Discussion items .. 559

28. Ambient Air Monitoring of Paper Industry Emissions 563
Background ... 563
 Monitoring requirements .. 563
 Associated requirements .. 565
Selected ambient air monitoring methods 566
 Ambient airborne particulate sampling 566
 Sulfur dioxide analysis .. 568
Carbon monoxyde ..
Hydrocarbons ..
Oxides of nitrogen ..
Air pollution ...
Discussion items ..

29. Stationary Sources of Pollution ..
Planning the emission control ..
 Physical characteristics ..
 Absorption ..
 Solid adsorbor ...
 Permeation ..
 Mechanical ...
 Solubility ...
 Temperature ..
 Volumetric ..
 Optimum ...
Volumetric flow ...
Particulate sampling ...
Gaseous pollution ...
 TRS testing ..}
 Sulfur dioxide ..
 Nitrogen oxides ..
 Carbon monoxide ..
 Volatile organic compounds ..
 Hazardous air pollutants ..
 Volatile organic compounds ..}
 Modified NIOSH ...
 Condensation ..
 Continuous emissions monitoring
Discussion items ..

30. Application of Pollution Control Technology
Background ...
 Ambient air quality ..
 Air contaminants ..
 Types of models of emissions ..
 Physical model ...
 Chemical model ...
Carbon monoxide analysis .. 569
Photochemical oxidants analysis ... 569
Hydrocarbons .. 571
Oxides of nitrogen .. 571
Air pollution index .. 572
Discussion items ... 572

29. Stationary Source Sampling ... 575
Planning the program ... 575
Physical characteristics .. 577
Absorption and adsorption on container walls and connecting tubes 577
Solid adsorbent collecting systems .. 577
Permeation effects of plastics .. 577
Mechanical defects of sampling equipment 577
Solubility effects ... 578
Temperature effects ... 578
Volumetric sample errors ... 578
Optimum sampling rate .. 579
Volumetric flow rate measurement ... 579
Particulate sampling ... 579
Gaseous pollutant sampling ... 583
TRS testing ... 583
Sulfur dioxide testing ... 583
Nitrogen oxides testing ... 585
Carbon monoxide testing ... 585
Volatile organic compound testing ... 586
Hazardous air pollutant sampling and analysis 587
Volatile organic sampling train .. 587
Modified Method 5 train .. 588
Condensation and adsorption sampling 589
Continuous emission monitoring .. 590
Discussion items ... 591

30. Applications of Air Contaminant Dispersion Models 593
Background ... 593
Ambient air contaminant monitoring regulations 593
Air contaminant emission control regulations 593
Air contaminant dispersion modeling regulations 593
Types of models ... 595
Physical models ... 595

xix
Environmental management system ... 636
Training .. 637
Communications .. 637
Documentation and document control 637
Operational control procedures .. 637
Emergency preparedness .. 638
Monitoring and measuring .. 638
Corrective action ... 638
Environmental management system audits 638
Management review system .. 638
Summary .. 639
Discussion items ... 639

34. Ecological labels ... 641
Reasons for ecological labels ... 641
Types of ecological labels .. 641
Certification ... 641
Problems .. 641
Ecological labels ... 641
Discussion items ... 642

35. Life Cycle Assessment of Product Systems 643
Introduction .. 643
 Emergence of new paradigm ... 643
 Analytical tool of choice .. 644
 Implications for the forest products industries 644
Organization of the chapter .. 645
Terms and operational definitions in risk and impact assessment .. 646
 Hazards, risk, and types of assessment 646
 Resolving the conundrum for LCIA 646
 Endpoints ... 647
What an LCA looks like ... 648
 Goal or purpose ... 648
 Product systems within system boundaries and a common functional unit .. 648
 Life cycle inventory analysis ... 649
Major impact assessment approaches 655
 Environmental impact assessments 655
 LCA of a product system ... 655
 Human health risk assessment .. 656
Example of application of LCA to human health consequences . 657
Ecological risk assessment ... 658
Ecosystem endpoints and their measurements 659
Life cycle assessment—Generation and evolution of the concept 659
 Early developments ... 659
 Energy crisis and the packaging issue 660
 Initial assessment efforts 660
 Standardization efforts 661
LCIA—User's guide for products of the forest industry 663
Allocation procedures ... 664
Other developments on LCA 665
Applications of LCA ... 665
Fundamental phases of LCA 666
 Critical review ... 668
 Goal definition ... 668
 Scope .. 669
 Product, function, functional unit, and reference flows 669
Inventory analysis, LCI .. 674
 Procedures .. 674
 Databases and software 674
 General procedures for allocation and recycling per ISO 14041 674
 Allocation in the forest product system 676
Life cycle impact assessment 683
 Selection of impact categories, indicators, and models 683
 Assignment of LCI results to classes of impact categories—classification 684
 Calculation of category indicator results—characterization 684
 Normalization and weighting 685
Interpretation .. 686
 Sensitivity analysis ... 686
 Uncertainty analysis ... 688
Role of product system in understanding sustainable development 688
 NEPA and Brundtland Commission initiatives on sustainability 689
 Function of the product 690
 Conceptual framework model 690
 Evolutionary stages of the new paradigm 690
 Policy and regulatory developments 692
Future of LCA ... 693
Discussion items ... 694

INTRODUCTION

Change is a basic feature of our environment. Many people are aware of this, but few can clearly explain what it means. In the past, change was often seen as a positive force, bringing about improvement and progress. In recent years, however, the concept of change has taken on a different meaning, with a focus on the impact of human activities on the environment.

In the 1960s, the environmental movement began to gain momentum as people became increasingly concerned about the state of the world. One of the key figures in this movement was the Sierra Club, which was founded in 1892. The club's mission was to protect the natural beauty of the American wilderness areas.

In 1964, the club published a report called "The Report to the Club," which helped to galvanize public interest in conservation. The report highlighted the need for conservationists to focus on the long-term needs of the environment, rather than just the short-term benefits of human activities.

In 1968, President Lyndon B. Johnson signed the National Environmental Policy Act (NEPA), which established a national policy on the environment and required federal agencies to consider the environmental impact of their actions. This was the first major piece of federal legislation to address environmental issues.

In the 1970s, the concept of sustainable development began to gain prominence. The term was first used by the Club of Rome in 1972, in their report "The Limits to Growth." The report argued that the world was facing a crisis due to overpopulation and resource depletion.

In the 1980s, the concept of sustainable development became more widely accepted, with the publication of the Brundtland Report in 1987. The report defined sustainable development as "meeting the needs of the present without compromising the ability of future generations to meet their own needs."

In the 1990s, the concept of sustainable development became an integral part of international policy, with the establishment of the United Nations Commission on Sustainable Development (UNCCD) and the United Nations Conference on Environment and Development (UNCED). These events helped to bring the concept of sustainable development to the forefront of global policy.

In recent years, the concept of sustainable development has continued to evolve, with a focus on both economic and social aspects. The concept of sustainable development is now seen as a way to address the challenges of the 21st century, including climate change, inequality, and poverty.

Although Earth Day was first observed on April 22, 1970, it is now celebrated on April 22 of each year. The purpose of Earth Day is to raise awareness about environmental issues and encourage action to protect the planet.

In conclusion, the concept of sustainable development has become an integral part of global policy, with a focus on meeting the needs of the present without compromising the ability of future generations to meet their own needs. The concept of sustainable development is now seen as a way to address the challenges of the 21st century, including climate change, inequality, and poverty.