Stay Fit After 50
by Steve Moore, Wausau Paper
A Baby Boomer turns 50 years old every 7 seconds. That’s 4.5 million every year!
I recently turned 53. Like most of you, my body has changed with the years—mainly, it wanted to add pounds. Pounds that I don’t need.
I’ve been active in athletics all my life. About four years ago I discovered bodybuilding. The sport of bodybuilding has taught me a great deal about nutrition which I wish I had known many years ago. You see, I always battled to keep my weight down. As I got older, this struggle became harder and harder to win.
Earlier this year, I was fortunate enough to win the Masters Division (age 52) of the 2005 NPC Wisconsin State Bodybuilding Championships. While getting into the gym and lifting weights is important, any bodybuilder will tell you that proper nutrition is 80-90% responsible for getting into condition to step on-stage in a skinny posing trunk. The average bodybuilder is less than 5% body fat while the average male is 18.5% and the average female is 24.5%.
Obviously, a bodybuilder has to know a thing or two about burning fat, and the best weapon in this battle is proper nutrition. Notice that I don’t use the word ‘diet’. When people hear ‘diet’ they think of reducing calories and being hungry most of the time. Diets have a beginning and an end—but proper nutrition is a lifelong process.
You don’t have to be a bodybuilder or any other type of athlete to see dramatic changes in your health, appearance, energy level, and happiness. Just follow some basic principles:
• Eat 5 or 6 smaller meals per day. The key is to keep your metabolism stoked like a fire in a wood stove. If you restrict your calorie intake to lose weight, your metabolism will slow down as it tries to stave off a potential famine. It’s a natural defense mechanism from our prehistoric origins to protect us from starvation. Eventually, you will lose weight, but about 1/3 of the weight loss will be lean tissue, not fat. When the ‘diet’ ends you will most likely regain most or all the weight lost in the form of fat.
• Each meal should be 50-60% protein, 25-30% carbohydrates, and 10-15% fat. Your protein should mostly come from lean meats such as fish, chicken/turkey breasts, lean beef, and egg whites. You should be very careful to restrict carbohydrates to the low-glycemic type such as oatmeal, green vegetables (green beans, broccoli, asparagus, etc.), brown rice, and some fruits (grapefruit, apples). High-glycemic carbs burn quickly and are converted into fat. The good types of fat to eat are salmon, fish, nuts, avocados, and olive oil.
• Stay away from refined foods, especially refined sugars and refined wheat products (white bread, white rice, crackers, pastries, white rice, etc.). These foods cause your insulin levels to rise and high insulin levels cause your body to store fat. The idea is to keep your blood insulin low and steady to keep your metabolism revved up.
• Drink lots of fluids each day (but not milk or alcohol). Water flushes the system of waste products and speeds up the fat burning process. Drinking a lot of water will not cause water retention (but you’ll probably spend more time in the bathroom). You know you are drinking enough fluids when your urine is almost colorless.
• Forget the bathroom scales, forget ‘dieting’, forget Atkins. Instead, focus on proper nutrition and judge your progress by your appearance in the mirror and how you feel. Eventually, you will learn to adjust your nutritional habits by what you see in the mirror. You will look and feel better—I guarantee it!
My Typical Daily Menu
OK, this is a lot of food—but I weight train five days a week and play racquetball twice a week. You may need to eat smaller amounts, especially if you’re a female.
Breakfast: 6 scrambled eggs (egg whites plus one yolk) 6-8 ounces chicken breast or other lean meat ½ cup oatmeal prepared in 1 ½ cups water
Mid-AM: 2 hard boiled eggs (whites only) 1 cup veggies 4-6 ounces lean meat
Lunch: 8-10 ounces lean meat 2 down appetizers fiber One apple or grapefruit
Mid-PM: Same as Mid-AM
Dinner: Same as Lunch or Breakfast
Eating: Fruit and ½ cup oatmeal
PLUS: I drink at least 1.5 gallons of fluids a day, mostly Sam’s Choice® flavored water from Wal-Mart®. It’s caffeine free, calorie free, and sodium free, but tastes great.
For more information on nutrition and bodybuilding, email me at gandydancer2@hotmail.com.

TAPPI www.tappi.org
To receive Frontline Focus at your mill each month for FREE, contact Laura Feix at 770-209-7364; lfeix@tappi.org
Copyright 2005 by TAPPi, all rights reserved.

Downtime

Stay Fit After 50

Copyright 2005 by TAPPi, all rights reserved.

Cover Page

Uptime

Downtime

In This Issue

Frontline Focus

Volume 1, Issue 6

www.tappi.org/frontline

Lubrication Basics – The 5 R’s

By Mike Johnson, Sr. Technical Consultant, Noria Corporation

A properly designed machine lubrication program may be the single most important factor leading to sustained machine reliability. Reliability is, of course, a critical factor in efficient, high quality production. This has been confirmed at several organizations pursuing incremental maintenance cost reductions that have rearranged job roles. This job realignment effectively eliminated machinery lubrication as a clearly defined job responsibility.

Sometimes it’s the right decision to shift this key role from maintenance to production personnel. However I find it difficult to imagine a situation where it makes sense to quit doing planned relubrication. Fortunately, this decision is less common as the process industry shifts toward an operational focus to manage machine reliability.

What is common, however, is the sense that “oils and grease’s grease”—and it doesn’t matter what with lubrication is a lost art. This orientation is less damaging to long term reliability than no program at all, but that’s not saying much. Most operations settle for poor performance from their dollars’ worth of lubrication money. The right decision is less common as the process industry shifts toward an operational focus to manage machine reliability.

The Lost Art

It’s not difficult to imagine how this condition exists. The old timers used to say that effective machinery lubrication was part art form and part science. That’s right—to a degree. When you build and study the science of lubrication you discover a complex field full of mechanics, physics, chemistry, and operations science. Consider the advanced complexities surrounding surface interaction and surface protection (the science of Tribology). When you look at the current state of most machine lubrication programs it becomes obvious there’s ample room for improvement from a rediscovery of the ‘lost art’.

• Lubrication: Lubrication is the science of friction reduction by the application of a material to improve the smoothness of movement of one surface over another.

• Tribology: Tribology is the science and technology concerned with interacting surfaces in relative motion, including friction, lubrication, wear, and erosion. (ASTM G-2)

Grinding into Dust

Several microscopics factors influence the ultimate success achieved from the machine relubrication activity. In fact, the real battle to protect machine surfaces, and ultimately company survival, occurs at the point where two surfaces interact. As Figure 1 suggests, machine surfaces are rough. When the surface peaks collide the peaks rip and tear, generating wear debris. The destructive influences are invisible to us without the help of a powerful microscope. As such, the machines may be grinding themselves to dust with each passing day UNLESS special care is given to the act of machine relubrication. We cannot see, hear or feel the effect while it is occurring, but we can see the consequences: lubricated component replacement.
Live Free or Die

We’ve been on the road again, this time for pleasure to see old friends and family in the Northeast. Do you know the State motto for New Hampshire? It’s “Live Free or Die” and they mean it. It’s on their auto license plate. motorists don’t have to wear helmets in New Hampshire. I asked our friends why. They said, “Live Free or Die.” Being a past motorcycle rider, I thought about the head injury changes when the heavy loads require a higher viscosity lubricant to be effective. As you can see, it’s not easy to select a lubricant at a given viscosity at room temperature that will also be the right viscosity at the machine’s normal operating temperature.

Additionally, as lubrication vages it changes chemically. The rate of chemical change depends on a lot of things, including moisture concentration, wear debris (iron and copper), heat and air in the lubricant. As these “contaminants” increase, the rate of chemical change increases and lubricant lifecycle decreases. If all these contaminants increase at the same time the lubricant degrades quickly. Additives are used to compensate for expected chemical change, but eventually the additives are consumed and the oil soars. Some additives have very special surface protection responsibilities. Once these particular additives are degraded or consumed the machine surfaces are at great risk of increased wear, regardless of the thickness of the oil at machine operating temperature.

When you look at the total system requirement for a set of lubricated components, and consider all of the complex interactions, it’s easy to see why product selection requires special attention.

Right Amount: There’s only a certain amount of space between interacting machine components. When the volume of lubricant is greater than the space between the machine surfaces—particularly if the lubricant is thick, as is the case with gears—the lubricant jams. This can be caused by a lack of pressure, which can degrade the lubricant.

Right Time: Timely application assures a constant, slight feed of lubricant to the machine load point. If the oil volume ever decreases to the point where there isn’t enough oil to fill the gap between the surfaces those surfaces begin to grind and wear. Lubricants should be replenished just often enough to supply the necessary amount, but not so often that excess lubricant accumulates at moving surfaces (see churning above).

Right Place: The OEM determines where the lubricant goes. In a few applications, such as the re lubrication of open gears, the lubrication technician may have some influence. If the lubricant is supplied to the wrong location near the meshing machine components and the lubricant film is allowed to escape, the machine surfaces will collide. Most machine builders define the number and location of lubricated components that require attention in the machinery maintenance manual. Only a careful review of both the machine and manual will ensure that all of the appropriate points have been identified.

Right Attitude: Once the correct product is selected, and the correct volume and frequencies are calculated, and the location is established and tagged, and all of these details are plugged into a scheduling program—all that remains is the careful and consistent execution of the required activities. Not everyone is right for this job. An effective lubrication technician is self motivated to work the job until it’s completely and properly done. This expert is driven by a thirst for knowledge, which leads to continuous study of the machine and the environment. As a result the technician brings an attitude of precision and excellence to work on a day to day basis.

The 5 Rs of Lubrication

• Right Product
• Right Amount
• Right Time
• Right Place
• Right Attitude

What Else?

Lubricant contamination control and lubricant analysis are major fields of study by themselves, which I’ll talk more about in future issues. Together, they give us a huge opportunity to improve machine dependability and reliability. Open the door to opportunity—it’s free and rewarding! Check out www.machinerylubrication.com. FF

Gene says:

Who wants to change the same defect and need the same fix? If you have three other pumps of the same manufacture at the same rating, it pays to take a look at them as well to see if they might be experiencing the same problem.

Could this problem fix be applied elsewhere? Perhaps to dissimilar equipment, even if it is different in rating but performing the same or similar functions. These are good targets of opportunity to extend your troubleshooting thinking.

We aren’t suggesting you deliberately make changes which could cause problems (additional work for you). Instead we want you to think about preventing problems and saving time and effort.

Ask yourself these preventive maintenance questions to “Extend the Most Likely Cause of the Problem”:

• What new problems could this fix cause?
• Could the excessive vibration caused by the extra shafts we replaced on the pump cause other problems?
• Maybe loosened intake or outflow lines or damage to the mounting bolts?
• If a new fix will affect other pumps does it make sense to apply it to all other pumps of the same manufacture?

What if we have the same defect and need the same fix? If you have three other pumps of the same manufacture at the same rating, it pays to take a look at them as well to see if they might be experiencing the same problem.

Further, do we need more frequent inspections or vibration monitoring?

“Extend the Fix”

Now let’s look a bit further. Well considered problem fixes should be applied elsewhere in the organization, on other pieces of equipment, machines or processes. One fixation for one problem benefits by having the fix for one problem installed in other areas as a preventative maintenance tactic before a failure. “Hold on a minute!” you say, “What are you talking about?”. We’re thinking beyond the frontline focus.

Would we need more frequent inspections or vibration monitoring?

Consultant, Application Solutions Group

Consultant, Application Solutions Group

Congratulations! You found the cause of this #5v#1 problem with the [motor / pump / valve / sensor / line / Other:]... . Now it’s time to clean up your tools and equipment, put away supplies and materials, grab a cup of coffee, close down and read the latest edition of Field & Str... in frontline Focus, right? Well, yes and no.

Now, don’t put down frontline Focus just yet. Keep reading and learn how good troubleshooters Think Beyond the Fix. They know the job isn’t completely done just because the problem is fixed.

Extend the Most Likely Cause of the Problem

The 5 Rs of Lubrication

• Right Product
• Right Amount
• Right Time
• Right Place
• Right Attitude

The 5 Rs of Lubrication

• Right Product
• Right Amount
• Right Time
• Right Place
• Right Attitude

TROUBLESHOOTING 101 – Part 4

By William F. Hauserman, Principal Consultant, Application Solutions Group

Lubrication Basics (cont.)

Live Free or Die

We’ve been on the road again, this time for pleasure to see old friends and family in the Northeast. Do you know the State motto for New Hampshire? It’s “Live Free or Die” and they mean it. It’s on their auto license plate. motorists don’t have to wear helmets in New Hampshire. I asked our friends why. They said, “Live Free or Die.” Being a past motorcycle rider, I thought about the head injury changes when the heavy loads require a higher viscosity lubricant to be effective. As you can see, it’s not easy to select a lubricant at a given viscosity at room temperature that will also be the right viscosity at the machine’s normal operating temperature.

Additionally, as lubrication vages it changes chemically. The rate of chemical change depends on a lot of things, including moisture concentration, wear debris (iron and copper), heat and air in the lubricant. As these “contaminants” increase, the rate of chemical change increases and lubricant lifecycle decreases. If all these contaminants increase at the same time the lubricant degrades quickly. Additives are used to compensate for expected chemical change, but eventually the additives are consumed and the oil soars. Some additives have very special surface protection responsibilities. Once these particular additives are degraded or consumed the machine surfaces are at great risk of increased wear, regardless of the thickness of the oil at machine operating temperature.

When you look at the total system requirement for a set of lubricated components, and consider all of the complex interactions, it’s easy to see why product selection requires special attention.

Right Amount: There’s only a certain amount of space between interacting machine components. When the volume of lubricant is greater than the space between the machine surfaces—particularly if the lubricant is thick, as is the case with gears—the lubricant jams. This can be caused by a lack of pressure, which can degrade the lubricant.

Right Time: Timely application assures a constant, slight feed of lubricant to the machine load point. If the oil volume ever decreases to the point where there isn’t enough oil to fill the gap between the surfaces those surfaces begin to grind and wear. Lubricants should be replenished just often enough to supply the necessary amount, but not so often that excess lubricant accumulates at moving surfaces (see churning above).

Right Place: The OEM determines where the lubricant goes. In a few applications, such as the re lubrication of open gears, the lubrication technician may have some influence. If the lubricant is supplied to the wrong location near the meshing machine components and the lubricant film is allowed to escape, the machine surfaces will collide. Most machine builders define the number and location of lubricated components that require attention in the machinery maintenance manual. Only a careful review of both the machine and manual will ensure that all of the appropriate points have been identified.

Right Attitude: Once the correct product is selected, and the correct volume and frequencies are calculated, and the location is established and tagged, and all of these details are plugged into a scheduling program—all that remains is the careful and consistent execution of the required activities. Not everyone is right for this job. An effective lubrication technician is self motivated to work the job until it’s completely and properly done. This expert is driven by a thirst for knowledge, which leads to continuous study of the machine and the environment. As a result the technician brings an attitude of precision and excellence to work on a day to day basis.

The 5 Rs of Lubrication

• Right Product
• Right Amount
• Right Time
• Right Place
• Right Attitude

What Else?

Lubricant contamination control and lubricant analysis are major fields of study by themselves, which I’ll talk more about in future issues. Together, they give us a huge opportunity to improve machine dependability and reliability. Open the door to opportunity—it’s free and rewarding! Check out www.machinerylubrication.com. FF

Mike Johnson is a Certified Maintenance and Reliability Professional (CMRP), is the Senior Technical Editor for Machinery Lubrication and Practicing Oil Analysis magazines, and is a Senior Technical Consultant for Noria Reliability Solutions.

Gene Canavan is the Senior Technical Editor for Machinery Lubrication and Practicing Oil Analysis magazines, and is a Senior Technical Consultant for Noria Reliability Solutions.

Gene says:

SUMMER IS FULL-BLAST, AND WE NEED YOUR SUMMER VACATION STORIES! SEND US A STORY AND A COUPLE OF PHOTOS AND YOU COULD BE THE WINNER OF A $200 GIFT CERTIFICATE.

We aren’t suggesting you deliberately make changes which could cause problems (additional work for you). Instead we want you to think about preventing problems and saving time and effort.

Ask yourself these preventive maintenance questions to “Extend the Fix of the Problem”:

• Are there similar pieces of equipment that might have the same defect and need the same fix? If you have three other pumps of the same manufacture at the same rating, it pays to take a look at them as well to see if they might be experiencing the same problem.

Could this problem fix be applied elsewhere? Perhaps to dissimilar equipment, even if it is different in rating but performing the same or similar functions. These are good targets of opportunity to extend your troubleshooting thinking.

Preventing fires is cheaper, safer and a whole lot easier than fighting fires, we know that. Practicing Think Beyond the Fix is just another way to enhance your preventive maintenance actions. (Remember cheaper, safer and a lot easier!?) And while solving problems is your job and can bring a high degree of job satisfaction, the job satisfaction of knowing problems never happened because of your actions can be even greater!

You’ll find an even more gratifying level of achievement and find more time for coffee and reading (….Frontline Focus, naturally). Try a little Think Beyond the Fix, we guarantee you’ll like it! FF

For more information visit www.asqgcp.com

National Network for Pulp and Paper Technology Training "a vision for transformation of a core American industry" www.tappi.org/npt2
Lubrication Basics (cont.)

Live Free or Die

We’ve been on the road again, this time for pleasure to see old friends and family in the Northeast. Do you know the State motto for New Hampshire? It’s “Live Free or Die” and they mean it. It’s on their auto license plate. Motorcyclists don’t have to wear helmets in New Hampshire. I asked our friends why. They said, “Live Free or Die.” Being a past motorcycle rider, I thought about the head injury changes when the heavy loads require a higher viscosity lubricant to be effective. As you can see, it’s not easy to select a lubricant at a given viscosity at room temperature that will also be the right viscosity at the machine’s normal operating temperature.

Additionally, as lubrication viscosities ages it changes chemically. The rate of chemical change depends on a lot of things, including moisture concentration, wear debris (iron and copper), heat and air in the lubricant. As these “contaminants” increase, the rate of chemical change increases and lubricant lifecycle decreases. If all these contaminants increase at the same time the lubricant degrades quickly. Additives are used to compensate for expected chemical change, but eventually the additives are consumed and the oil soars. Also, some additives have very special surface protection responsibilities. Once these particular additives are degraded or consumed the machine surfaces are at great risk of increased wear, regardless of the thickness of the oil at machine operating temperature.

When you look at the total system requirement for a set of lubricated components, and consider all of the complex interactions, it’s easy to see why product selection requires special attention.

Right Amount: There’s only a certain amount of space between interacting machine components. When the volume of lubricant is greater than the space between the machine surfaces—particularly if the lubricant is thick, as is the case with greases—the lubricant chambers. This results in increased friction, which can ultimately degrade the lubricant.

Right Time: Temporal application assures a constant, slight feed of lubricant to the machine load point. If the oil volume ever decreases to the point where there isn’t enough oil to fill the gap between the surfaces, those surfaces begin to grind and wear. Lubricants can be replenished just often enough to supply the necessary amount, but not so often that excess lubricant accumulates at moving surfaces (see charting above).

Right Place: The OEM machinery design determines where the lubricant goes. In a few applications, such as the relubrication of open gears, the lubrication technician may have some influence. If the lubricant is supplied to the wrong location near the meshing machine components and the lubricant film is allowed to escape, the machine surfaces will collide. Most machine builders define the number and location of lubricated components that require attention in the machinery maintenance manual. Only a careful review of both the machine and manual will ensure that all the appropriate points have been identified.

Right Attitude: Once the correct product is selected, and the correct volume and frequency are calculated, and the location is established and tagged, and all of these details are plugged into a scheduling program—all that remains is the careful and consistent execution of the required activities. Not everyone is right for this job. An effective lubrication technician is self motivated to work the job until it’s completely and properly done. This expert is driven by a thirst for knowledge, which leads to continuous study of the lubricant-chambered field. As a result the technician brings an attitude of precision and excellence to work on a day to day basis.

The 5 R’s of Lubrication

• Right Product
• Right Amount
• Right Time
• Right Place
• Right Attitude

What Else:

Lubricant contamination control and lubricant analysis are major fields of study by themselves, which I’ll talk more about in future issues. Together, they give us a huge opportunity to improve machine dependability and reliability. Open the door to opportunity—it’s free and rewarding! Check out www.machinerylubrication.com.

Gene Canavan

TROUBLESHOOTING 101 – Part 4

By William F. Hausserman, Principal Consultant, Application Solutions Group

Gene says:

Summer is in full-blust, and we need your summer vacation stories! Send us a story and a couple of photos and you could be the winner of a $200 gift certificate.

For more information visit www.asgops.com.

Stop to think for another minute and ask these questions to ‘Extend the Fix of the Problem’:

• Are there any fixed pieces of equipment that might cause the same defect and need the same fix? If you have three other pumps of the same manufacture at the same rating, it pays to take a look at them as well to see if they might be experiencing the same problem.

• Could this problem fix be applied elsewhere? Perhaps to dissimilar processes, or other equipment, perhaps in processes or customers? For example, look at other pumps of different manufacture, even if a different rating but performing the same or similar functions. These are good targets of opportunity to extend your troubleshooting thinking.

Preventing fires is safer, safer and a whole lot easier than fighting fires, we know that. And ‘Think Beyond the Fix’ is just another way to enhance your preventive maintenance actions. (Remember cheaper, safer and a lot easier?) And while solving problems is your job and can bring a high degree of job satisfaction, the realization of knowing problems never happened because of your actions can be even greater!

You’ll find an even more gratifying level of achievement and find more time for coffee and reading (…Frontline Focus, naturally). Try a little Think Beyond the Fix; we guarantee you’ll like it! FF

For more information visit www.asgops.com.

We aren’t suggesting you deliberately make changes which could cause problems (and additional work for you). Instead we want you to think about preventing problems and saving time and effort.

For example, don’t think to another minute and ask these questions to ‘Extend the Fix of the Problem’:

• Are there any fixed pieces of equipment that might cause the same defect and need the same fix? If you have three other pumps of the same manufacture at the same rating, it pays to take a look at them as well to see if they might be experiencing the same problem.

• Could this problem fix be applied elsewhere? Perhaps to dissimilar processes, or other equipment, perhaps in processes or customers? For example, look at other pumps of different manufacture, even if a different rating but performing the same or similar functions. These are good targets of opportunity to extend your troubleshooting thinking.
Downtime

Stay Fit After 50
by Steve Moore, Wausau

A Baby Boomer turns 50 years old every 7 seconds. That's 4.5 million every year! I recently turned 53. Like most of you, my body has changed with the years—mainly, it wanted to add pounds. Pounds that I don't need. I have been active in athletics all my life. About four years ago I discovered bodybuilding. The sport of bodybuilding has taught me a great deal about nutrition which I wish I had known many years ago. You see, I always battled to keep my weight down. As I got older, this struggle became harder and harder to win.

Earlier this year, I was fortunate enough to win the Masters Division (age 50+) of the 2005 NPC Wisconsin State Bodybuilding Championships. While getting into the gym and lifting weights is important, any bodybuilder will tell you that proper nutrition is 60-70% responsible for getting into condition to step on-stage in skinny posing trunks. The average bodybuilder is less than 5% body fat while the average male is 18% and the average female is 24%.

Obviously, a bodybuilder has to know a thing or two about burning fat, and the best weapon in this battle is proper nutrition. Notice that I don’t use the word ‘diet’. When people hear ‘diet’ they think of reducing calories and being hungry most of the time. Diets have a beginning and an end—but proper nutrition is a lifelong process.

You don’t have to be a bodybuilder or any other type of athlete to see dramatic changes in your health, appearance, energy level, and happiness. Just follow some basic principles:

- Eat 5 or 6 smaller meals per day. The key is to keep your metabolism stoked like a fire in a wood stove. If you restrict your calorie intake to lose weight, your metabolism will slow down to the point where you may gain weight. If you eat five or six small meals per day, you will keep your metabolism stoked.

- Properly cleaned lubricant forms a barrier film that coats the surfaces. When the film is squeezed by the intense load, and to do so without destroying the interacting machine surfaces. That is, if the lubricant conditions are right.

- Lubrication Basics – The 5 R’s

By Mike Johnson, Sr. Technical Consultant, Noria Corporation

A properly designed machine lubrication program may be the single most important factor leading to sustained machine reliability. Reliability is, of course, a critical factor in efficient, high quality production. This has been confirmed at several organizations pursuing incremental maintenance cost reductions that have rearranged job roles. This job rearrangement effectively eliminated lubrication machinery as a cleanly defined job responsibility.

Sometimes it’s the right decision to shift this key role from maintenance to production personnel. However, I find it difficult to imagine a situation where it makes sense to quit doing planned lubrication. Fortunately, this decision is less common as the process industry shifts toward an operational focus to manage machine reliability.

What is common, however, is the sense that “oil’s oil and grease’s grease”—and it doesn’t matter what happens with lubrication based machine care. This orientation is less efficient long term than no program at all, but that’s not saying much. Most operations settle for poor performance from their dollar’s worth of lubricant. Filters, lubricant analysis and the labor for their programs without even knowing this to be the case.

The Lost Art

It’s not difficult to imagine how this condition exists. The old timers used to say that effective machinery lubrication was part art form and part science. That’s right—to a degree. When you begin to study the science of lubrication you discover a complex field full of mechanics, physics, chemistry, and operations science. Consider the advanced complexities surrounding surface interaction and surface protection (the science of Tribology). When you look at the current state of most machine lubrication programs it becomes obvious there’s ample room for improvement from a rediscovery of the ‘lost art’.

• Lubrication: Lubrication is the science of friction reduction by the application of a material to improve the smoothness of movement of one surface over another.

• Tribology: Tribology is the science and technology concerned with interacting surfaces in relative motion, including friction, lubrication, wear, and erosion. (ASTM G-2)

Grinding Into Dust

Several microscopic factors influence the ultimate success achieved from the machine relubrication activity. In fact, the real battle to protect machine surfaces, and ultimately company survival, occurs at the point where two surfaces interact. As Figure 1 suggests, machine surfaces are rough. When the surface peaks collide the peaks rip and tear, generating wear debris. Debris that can affect surfaces are invisible to us without the help of a powerful microscope. As such, the machines may be grinding themselves to dust with each passing day unless special care is given to the act of machine relubrication. We cannot see, hear or feel the effect while it is occurring, but we can see the consequences: lubricated component replacement.

Fortunately, given that the destructive forces are microscopic, just a little bit of forward progress goes a long way toward improvement in machine life. Literally, help can be right around the corner.

As machine surfaces come together a properly selected and properly cleaned lubricant forms a barrier film that coats the surfaces. When the film is squeezed by the intense machine loads the film becomes very dense (thick). If an operator or mechanic could take the lubricant out and handle it at this moment of extreme pressure the lubricant would seem nearly, if not completely solid. Once the pressure is removed the lubricant goes back to its original consistency. This phenomenon enables us to operate machines supporting many thousands of pounds of load, and to do so without destroying the interacting machine surfaces. That is, if the lubricant conditions are right.

The 5 R’s of Machinery Lubrication

Some bristle at the notion that there is a ‘right way’ to lubricate a machine. Those of the ‘oil’s oil and grease’s grease’ group may especially have some difficulty because it just might mean that they’ve been doing it wrong for many years. There are in fact five ‘rights’ to consider!

- Right Product: If you don’t find the right product for an application then failure will eventually occur. As I said earlier, a lubricant film gets very dense (thick) as the pressure increases, right up to a point where it appears to be solid. The pressure required to create that effect are common to rolling contact components, such as element bearings and gears. Lubrication engi...