Recovery Boiler Optimization

Andrew Jones
International Paper

TAPPI Kraft Recovery Course
References

 – Chapter 15 – Automatic Control
• **Combustion control strategy**
 • Flue gas emissions control strategy
 • Green liquor production & quality
 • Steam flow rate & temperature
• **Others**
 – Fireside deposit control
 – Safety systems and training
• **Implications for recovery boiler operations**
Combustion Control Strategy

- Black liquor volumetric flow control
- Black liquor pressure control
- Black liquor solids mass flow control
- Consumed air control (constant energy release)
Black liquor volumetric flow (traditional)

- Header or nozzle flow
- Fixed number of nozzles
- Liquor pressure varies
- Energy release in the furnace is sensitive to
 - Changes in percent fired solids
 - As percent fired solids decrease, energy release decreases
Black liquor pressure (traditional)

- Header or nozzle pressure
- Fix number of nozzles
- Working pressure range 5 – 10 psi
- Liquor flow varies
- Energy release in the furnace is partially “self-correcting”
 - With respect to changes in percent fired solids
 - As percent fired solids increase, BL flow decreases
Black liquor solids mass flow control

- Incorporates percent solids measurement
- Header or nozzle mass flow
- Volumetric flow and pressure vary
- Energy release in the furnace is less sensitive
 - To changes in percent fired solids
 - Remains subject to variations in BLS heating value
- Air supply & distribution often a function of BLS rate
Consumed air control (constant energy release)

• Maintain constant amount of air (O2) consumed
 – Energy release based on BTU/lb O2 similar for many materials

• Incorporates measurement of flue gas excess O2

• BL volumetric flow and pressure vary

• Energy release in the furnace is less sensitive
 – To changes in % solids and in BLS heating value

• Requires high-level DCS and added instrumentation
Typical Trends in Consumed Air Control
(constant energy release)

- steam flow
- excess O2
- BL flow
- % fired solids
- BL HHV

(Process response)
(setpoint)
(adjustment)
(disturbances)
Best practice: Consumed air control
(constant energy release)

• Improve process stability and predictability
• Increase BLS firing rate & run time
• Increase steam generation / BLS fired
• Improved green liquor reduction & dregs
• Reduce emissions levels and/or excursions
• Control is based on models between each manipulated variable (MV) and all controlled variables (CV).

• Most CVs do not have setpoints; operation within a range is allowed.
Model Inputs and Outputs

Terminology:

CV – Controlled Variable (Setpoint or range)

MV – Manipulated Variable (Cascade Setpoint to PID)

FV – Feedforward Variable
Motivations for Optimization

• Improved control reduces operating variability

With Multi-Variable Control
Reduced operating envelope

Constraint

With Optimization
Closer approach to optimum

Most profitable operating point

Optimization locates the best operating point

MVC allows closer control to optimum point
Case 1: Consumed air control, benefits

- Low odor RB with close-coupled Concentrator
- Part of major RB rebuild in the early 1990s
 - Vendor supplied package integrated into DCS
- Incorporated production rate and percent fired solids control
 - BLS rate ramped up and % solids unchanged
 - During Concentrator wash with lower percent fired solids the RB steam flow remains stable.
- Excellent operator acceptance (after 2-weeks), uptime >90%.
Case 2: Consumed air control, impact

- Total air flow and air distribution changes with liquor firing
 - Economizer exit O2 std. dev. decreased from 0.45% to 0.11% units
 - Economizer exit O2 decreased from 2.8% to 1.5% (dry basis)
 - Total excess air decreased from 115% to 108%
 - Actual flue gas weight decreased by 5.5%

Reference for this work:
Case 2: Consumed air control, value

- Overall performance metrics
 - Black liquor capacity increased by 8%
 - (Note: typical increase is 2%)
 - Thermal efficiency increased 0.35%, i.e. 3.24 to 3.25 ton stm /ton bls
 - Decreased fouling of boiler convection surfaces

Reference for this work:
Case 3: Consumed air control, optimization

- Model predictive control used to develop models and continuously optimize

- “While the boiler is running more or less steady, one of the input variables is “bumped” and the boiler response is monitored…”

- “This gives both the time response and the magnitude of the impact…”

Reference for this work:
Case 3: Consumed air control, value

• Achieved significant reduction in natural gas use for SO2 control

• Able to operate at lower black liquor firing rates without use of natural gas

• Generator bank plugging was minimized.

Reference for this work:
• Combustion control strategy
• **Flue gas emissions control strategy**
• Green liquor production & quality
• Steam flow rate & temperature
• Others
 – Fireside deposit control strategy
 – Safety systems and training
• Implications for recovery boiler operations
SO2 control strategy

• High temperature lower furnace
 – Result of many process conditions, not a control variable
 – Overall indicator of furnace and boiler “health”
TRS control strategy

- Time / temperature / turbulence / O2
 - Result of final oxidation step, not a control variable
 - Fugitive TRS sources from high temperature liquor tanks
CO control strategy

- Time / temperature / turbulence / O2
 - Integral part of excess O2 control
 - As a constraint or as a controlled variable
NOx control strategy

• Air delivery system design
 – Result of process conditions, including nitrogen content of BL, not a control variable
 – Some ability to lower via “air-staging”
 • Increase air split to highest level in boiler
 • Addition of quaternary air to increase ability to stage air
 • Typically 10-20% reduction in NOx can be achieved
 – Also a function of percent BLS and firing rate
 – Use of SCR has been investigated but no long term demonstrated examples
Particulate control strategy

- Electrostatic precipitator design
 - Achieve desirable fume chemistry with high temperature in lower furnace, avoiding “acidic deposits” associated with low temperatures
 - Minimize excess air to improve collection efficiency
Overall: Good emissions control

- Air system with 3 or more levels
- Excess flue gas O2 control with CO constraints
- Management of air flow and distribution with BLS firing rate
- Management of air port pressures (manual or auto)
 - Automatic port rodders preferred approach
 - Velocity dampers at all air levels also preferred
Case 4: High SO2 incidents

• Low odor RB with a 3-level air system
• Periods of high SO2, environment & process issues
• Most likely causes:
 – Increase in the digester EAOW charge (major)
 • Increased dead load chemical, lowered BLS HHV
 • Monitor steam to dry solids ratio to track changes in black liquor heating value
 – Decrease in % BL solids (a few)
 • Increased water to furnace, lowered furnace temperatures
• Resolution:
 – Closer monitoring of up-stream operations
 – Improved communications between pulping & recovery
Outline

- Combustion control strategy
- Flue gas emissions control strategy
- **Green liquor production & quality**
- Steam flow rate & temperature
- Others
 - Fireside deposit control strategy
 - Safety systems and training
- Implications for recovery boiler operations
GL total titratable alkali (TTA)

- Controlled with surrogate signals, e.g., density, refractive index, conductivity, etc., with adjustments from TTA tests
- Controlled by weak wash flow adjustments
- Stabilization tank & control after dissolving tank improves control
GL dregs content and settling rate

- Sometimes monitored, but not controlled
- Affected directly by lower furnace & BL spray conditions
Outline

• Combustion control strategy
• Flue gas emissions control strategy
• Green liquor production & quality
• **Steam flow rate & temperature**
• Others
 – Fireside deposit control strategy
 – Safety systems and training
• Implications for recovery boiler operations
Steam flow rate and temperature

- Black liquor solids heating value
 - Dependent on pulping, dead load chemicals, makeup chemicals, and ash return strategy
- Overall thermal efficiency parameters
 - Examples in Jim Brewster’s talk on Energy
- Superheater fouling and deposit chemistry
 - Liquor cycle Cl & K chemistry
 - Sootblowing effectiveness
Case 5: Steam temperature

- Single-drum low odor RB
- Replacement for 3 DCE RB early 1990s
- Steam temperature decreased, no attemperation in less than 6 months
- Water wash(s) required in less than 12 months
Case 5: Steam temperature (con’t)

- Extensive testing of air & liquor delivery systems showed no improvements
- Reduced liquor cycle chloride (by ash purging)
 - Achieved stable steam temperature
 - Run time between water washes increased to 12 months
Outline

• Combustion control strategy
• Flue gas emissions control strategy
• Green liquor production & quality
• Steam flow rate & temperature

• Others
 – Fireside deposit control strategy
 – Safety systems and training

• Implications for recovery boiler operations
Fireside deposit control

• Remember what Honghi has just told you!
Safety systems and training

• Prerequisite for equipment to run and to become a qualified operator

• Recovery boiler system controls have been identified as very challenging compared to other industrial processes

• Black Liquor Recovery Boiler Advisory (BLRBAC) Committee key industry safety organization.
Outline

• Combustion control strategy
• Flue gas emissions control strategy
• Green liquor production & quality
• Steam flow rate & temperature
• Others
 – Fireside deposit control strategy
 – Safety systems and training

• Implications for recovery boiler operations
Implications (1)

- Foundations of recovery boiler operation
 - Consumed air control (constant energy release) combustion strategy
 - Manage liquor cycle with respect to Cl, K, and dead load chemicals
- Control of emissions is achieved with operating practices that improve recovery boiler throughput and thermal efficiency
Implications (2)

• Place a high priority on achieving good lower furnace operation, which is key to
 – Good green liquor quality
 – Good upper furnace ash chemistry

• Instill in operating staff the complexity of the recovery boiler and the need to always be on safety alert.