International Conference on Nanotechnology for Renewable Materials

Iron Oxide Nanoparticles for Enhanced Visualization of Pulp Fibres by X-Ray Micro-Computed Tomography

<u>Anderson T. V. Veiga</u>, Elisa S. Ferreira, James Drummond, Samuel Brown, Lewis Mason, Andre Phillion, D. Mark Martinez, Emily D. Cranston

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Nanotechnology to Advance Mechanical Pulp Applications

- Adaptability to changing product demand and supply (labour and materials)
- Understanding of products affected by the pulping process
- Explore new applications → high valueadded products and advanced sustainable materials

Advanced characterization method

 X-ray micro-computed tomography (MicroCT)

MicroCT

- X-ray imaging in 3D (same as clinical CT scans)
- Smallest pixel size = 0.3 µm

ZEISS Xradia 520 Versa X-ray microCT (Pulp and Paper Centre, UBC)

 TAPPI Nano 2023
 atvveiga@student.ubc.ca
 3

Pulp Fibres Visualized by Micro-CT

Why Enhance Contrast?

- Easier and more effective image processing
- Full fibre segmentation
- Visualize fibre morphology and fibrefibre contacts
- With and without chemical treatment/modification
- Track the labelled fibres in 3D over time in microCT

Absorption of water
Swelling
Drying
Mechanical deformation

Enable new lignocellulosic products and markets!

Mapping Water Absorbency in Paper with Iron Nanoparticles

Photo

(a)

Liquid absorption test – iron oxide nanoparticles as tracers

- (i) Immersed in NaOH: dark orange bottom(ii) Wet through capillary flow: light orange middle(iii) Ne contects white ten area
- (iii) MicroCT (i) 0.3% Fe

SEM

0% Fe

(iii) No contact: white top area

Iron Oxide Nanoparticle Labelling

Fully labelled fibres
Handsheets with 1 wt.% labelled fibres
Various fibre types
Image analysis

 TAPPI Nano 2023
 atvveiga@student.ubc.ca
 7

Fe-Labelled Fibres

*Primarily magnetite (Fe_3O_4) – $Fe^{(II)}$ + $Fe^{(III)}$ – brown/black; iron oxy(hydroxi)des

TAPPI Nano 2023atvveiga@student.ubc.ca8

Enhanced Image Processing

✓ Cross section microCT images

TAPPI Nano 2023 atvveiga@student.ubc.ca

Improved MicroCT Contrast

TAPPI Nano 2023atvveiga@student.ubc.ca10

Unlabelled and labelled fibres

2.5 µm voxel scan - 3D render

Labelled fibres can be distinguished and segmented

- Tensile stiffness of handsheet is statistically higher than unlabelled handsheet
- Loading 1 wt.% > theor. percolation of 0.5 wt.%

Optimize loading to not impact the mechanical properties significantly

Labelling Other Fibre Types

Iron oxide nanoparticle labelling protocol works with different fibre types

How does the surface of fibers affect nucleation and growth of NPs? I Kinetics studies CNF model films

Fe-labelled TMP 23 wt.% Fe

Fe-labelled oxidized TMP 28 wt.% Fe

Fibre surface chemistry affects labelling efficiency

□ Useful to spatially identify chemical modifications and fibre morphology

Pulp fibres labelled with iron oxide nanoparticles

- ✓High-contrast microCT images
- ✓ Fibre segmentation
- ✓Potential to be applied as tracers in paper products
- ✓ Support the development of lignocellulosic products

Acknowledgments – THANK YOU!

This research was conducted on the UBC Point Grey (Vancouver) campus, which sits on the traditional, ancestral, unceded territory of the x^wməθk^wəy'əm (Musqueam) First Nation.

