International Conference on Nanotechnology for Renewable Materials

Templated CNC Bouligands

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

American University

- NW Washington, DC
- Private, Methodist affiliation
- 7200 UG, 3800 GR, 1400 JD
- 12:1 student faculty ratio
- 90% internships, 70% study abroad
- Known for Political Science & International Service
- Growing science programs
 - ACS Programs in Chemistry & Biochemistry
 - Tailored MS Programs
 - Applied Chemistry
 - Clinical Bio²chemistry
 - Chemistry & Society

American University Research

Natural Product Flame Retardants

Cellulose – Polymer Nanocomposites

Natural Product Solvent Properties

Environmental Health & Safety of Cellulose Nanomaterials

Structural Hierarchy in Nature's Composites

Materials Today: Proceedings 1S (2014) 161 – 171

Guarín-Zapata, Nicolás, et al. Acta biomaterialia 23 (2015): 11-20.

Reflectance

					(nm)
Na-CNC	Slowest	517	98	-	-
Na-CNC	Slow	736	118	-	-
Na-CNC	Fast	1274	149	1570	270
P ⁺ -CNC	Slow	590	175	-	-
P ⁺ -CNC	Fast	655	279	1097	452

Lowered rate of drying and Phosphonium functionalization leads to blue shifting

Preparation of Cellulose Nanocrystals

Modification Process

Reactive Cations on CNCs films

	Strength (MPa)	Strain to Failure	Modulus (GPa)	Toughness (MPa.m/m)
Guan(50)-Gly(50)	60.35 ± 9.6	0.72 ± 0.11	11.86 ± 0.66	0.216
Wood CNCs	32.85 ± 5	0.36 ± 0.10	9.11 ± 0.52	0.059

Collaborators: Bharath Natarajan, Richard Sheridan

Film self-assembly

- Drying in humidity chamber
- Thin films possessing Bouligand structure
- Fluorophore randomly distributed throughout structure

ADA. Science & Research Institute

Samples Studied

Sample	Mass ratio (CNC:JA)	Mole ratio (NH:Gly)
Gly-CNC + D230	9.4 : 1	5.2 : 1
Gly-CNC + D400	9.4 : 1	2.7 : 1
Gly-CNC + D2000	9.4 : 1	0.6:1
Gly-CNC + D400	5:1	5.1:1
Gly-CNC + D2000	1.1 : 1	5.2 : 1
TMA-CNC + D230	9.4 : 1	
TMA-CNC + D400	9.4 : 1	
TMA-CNC + D2000	9.4 : 1	

Code	Name	AHEW or EEW
D230	Jeffamine D230	60
D400	Jeffamine D400	115
D2000	Jeffamine D2000	514
Gly	Glycidyltrimethylammonium	2950
ТМА	Tetramethylammonium	0

Nanoindentation – Nonreactive Cations

Nanoindentation – Effects of Reactive Cations

Nanoindentation – Effects of Diamine Length

Most compact, correlating with highest stiffness

D2000

FESEM – Film compaction

D230

D400

GlyMe₃N⁺ 10% amine

 Me_4N^+ 10% amine

TEM – Fragment Morphology

GlyMe₃N⁺ 10% D400

Me₄N⁺ 10% D400

Effects of Cation on Bouligand Pitch

70 60 €50 GlyMe₃N⁺ Reflectance (0 20 10% amine 10 0 200 300 500 600 700 400 100 µm 100 µm d. 100 µm 70 60 €50 Reflectance 0 20 20 Me_4N^+ 10% amine 500 600 200 400 700 300 Wavelength (nm) D400 D2000 D230

Non-reactive has similar pitch to Na-CNC, with blue shifts as diamine becomes more hydrophobic Reactive has large blue shift with broader pitch as diamine length increases

Effects of Diamine on Bouligand Pitch

Red shift upon greater diamine content suggests exclusion within Bouligand

Fluorescence Lifetime Imaging (FLIM)

- Lifetime probes local environment of fluorophore
 - Free moving fluorophores have more chances for collisions and other non-radiative energy transfer
 - Confined/constrained fluorophores have longer lifetimes
- Multiple lifetimes mean heterogenous environments

• Smaller region examined

Nonreactive systems

Reactive Systems

Conclusions

- Non-reactive Systems
 - Micro/meso Homogeneity, Nano heterogeneity
 - E: D400 > D230 > D2000
 - σ_v: D230 > D400 > D2000
- Reactive Systems
 - Better homogeneity, significant loss in stiffness & strength
 - E: D400 > D230 > D2000
 - σ_{v} : D230 ≥ D400 > D2000
 - Tighter packing of Bouligand & composite
 - Longer diamines on edges or outer surface of Bouligand

Acknowledgments

- Jeremiah W. Woodcock
- Quinn T. Easter
- Shawn H. Chen
- Amanda J. Souna
- Sindhu Seethamraju
- Jan Obrzut
- Stephan J. Stranick
- Ange-Therese Akono
- Vladimir Oleshko
- Christopher L. Soles
- Jeffrey W. Gilman

Thank You!