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Cellulose
1. Most abundant biopolymer 

2. Wood as source material

3. Applications

4. Cellulose-based nanomaterials (CNs)
• Hydrophilic
• Free hydroxyl group for surface modifications
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Cellulose Nanomaterials Food Safety Study

Animal Studies 1,3 Cell-based Studies 2,3

Study Result Endpoint Result
Acute Oral Rat Toxicity

7-day Oral Toxicity 
(OECD TG 407)

NO ADVERSE EFFECTS Cytotoxicity In Co-
Culture Model

NO ADVERSE EFFECTS

14-day Oral Toxicity 
(OECD TG 407)

NO ADVERSE EFFECTS Barrier Integrity Over 
7-days

NO ADVERSE EFFECTS

Sub-chronic Oral Rat Toxicity Oxidative Stress NO ADVERSE EFFECTS

90-day Oral Toxicity 
(OECD TG 408)

NO ADVERSE EFFECTS Inflammation NO ADVERSE EFFECTS

1 Ong, K.J et al. (2020)
2 Pradhan et al. (2020)
3 Ede et al. (2020)

1. CNs behave similarly to conventional cellulose and raise no safety concerns when used as a food ingredient at 
4% of diet.

2. Baseline measurements for examining potential impact of future functionalization on toxicity.
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Surface Modifications and Applications

Material % Functional group % Applications %

CNC 46% TEMPO oxidized 27% Packaging 35%

CNF 46% Carboxylated 20% Polymer and 
composite

26%

Hairy 
cellulose

4% Alkylated 13% Metal ion absorbant 13%

Chitin 4% Cationic 10% Coating 9%

Sulfated 10% Cosmetics 4%

Carboxylmethylated 7% Others

Others

Table 1. Survey results - CN surface modifications and applications with high commercial potential. 

* TEMPO: 2,2,6,6-tetramethylpyperidine-1-oxyl 

TEMPO

C2/C3 Carboxy

Sulfated
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How changing the surface chemistry of CNs affects safety and regulatory acceptance?

Key Questions



Overarching Goal
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Development of safer-by-design toolbox and life cycle risk assessment (LCRA) for the 
production of safe functionalized CNs.



Tool Box Methods & Data Development
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ATS Safety Testing 
Methods

Physical Chemical 
Characterization 

Methods

Database of Safety 
Data

Database of Physical 
and Chemical Data

1st generation of 
modified CNs:

TEMPO

C2/C3 Carboxy

Sulfated

Methods and data to 
evaluate safety of CNs 
forms:

Inhalation Oral

Dermal Env.
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Interdisciplinary Approach to Safer by Design Toolbox

1. Synthesis of CNs with selected surface chemistries 
and in different geometric dimensions and aspect ratios.

2. Adapt non-animal testing protocols to assess cytotoxic 
response and inflammatory potential of surface-modified 
CNs.

3. Develop safer-by-design toolbox and life cycle risk 
assessment (LCRA).
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Surface Functionalization

Unfunctionalized cellulose

TEMPO

Periodate 
Chlorite 

HSO3Cl

TEMPO-CNFs

PC-CNFs

SCNFs

Two charge levels

Different L/W ratios

Three charge levels

TEMPO C2/C3 Carboxy
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Synthesis of TEMPO-Oxidized Cellulose Nanofibrils (TCNFs)
TCNF3.30 

3 mmol NaClO/g, 30 min blending
TCNF5.10 

5 mmol NaClO/g, 10 min blending
TCNF5.30

5 mmol NaClO/g, 30 min blending
TCNF8.30 

8 mmol NaClO/g, 30 min blending
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Synthesis of TEMPO-Oxidized Cellulose Nanofibrils (TCNFs)
TCNF3.30 

3 mmol NaClO/g, 30 min blending
TCNF5.10 

5 mmol NaClO/g, 10 min blending
TCNF5.30

5 mmol NaClO/g, 30 min blending
TCNF8.30 

8 mmol NaClO/g, 30 min blending
Charge: 1.10 mmol/g; 

Yield : 82.1%
Charge: 1.42 mmol/g; 

Yield : 84.2%
Charge: 1.42 mmol/g; 

Yield : 93.5%
Charge: 1.48 mmol/g; 

Yield : 100%
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PCCNF by Periodate-Chlorite Oxidation
PC-CNF0.5-0.5H

3.08 mmol NaIO4/g;
6.16 mmol NaClO2/g

30 min blending
Charge: 0.72 mmol/g; 

Yield : 49.3 %

PC-CNF0.5-9H
3.08 mmol NaIO4/g;
6.16 mmol NaClO2/g

30 min blending 
Charge: 0.82 mmol/g; 

Yield : 78.0 %

PC-CNF0.5-12H
3.08 mmol NaIO4/g; 
6.16 mmol NaClO2/g

30 min blending 
Charge: 0.91 mmol/g; 

Yield : 92.8 %

PC-CNF0.75-6H
4.62 mmol NaIO4/g;
6.16 mmol NaClO2/g

30 min blending 
Charge: 1.04 mmol/g; 

Yield : 99+ %
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Sulfation of CNF via Chlorosulfonic Acid (HSO3Cl)
SCNF1_30 

1 mmol/g HSO3Cl & 30 min, 
30 min blending

Charge: 1.49 mmol/g sulfate
Yield: 99%

SCNF1_25_45
1.25 mmol/g HSO3Cl & 45 min, 

30 min blending
1.84 mmol/g sulfate 

Yield: 99%

SCNF1.5_60_5 
1.5 mmol/g HSO3Cl, 60 min, 

5 min blending
Charge: 2.23 mmol/g;

Yield: 99 %

SCNF1.5_60
1.5 mmol/g HSO3Cl, 60 min, 

30 min blending
Charge: 2.23 mmol/g;

Yield: 99 %



   

  

 
  

 

 

 

  
 

C(E)
C(M)

R

H

Mode(s)-of-
action

Gut cell co-culture 
model

Cell death, inflammation, 
oxidative stress

Structural 
endpoints

Gut cell co-culture 
model

Cellular morphology, 
barrier resistance

Molecular 
pathways

Gut cell co-culture 
model RNA-seq analyses

Zebrafish model

Developmental
endpoints Zebrafish model

Coagulated eggs; somite 
formation; detached tail; 

heartbeat
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Alternative Testing Strategies (ATS)

• Reducing and replacing animal testing with ATS.

• ATS developed for safety assessment

• Simulated inhalation exposure: alveolar lung model

• Dermal exposure: dermal and epidermal cells

• Simulated oral exposure: gastrointestinal model

• Environmental toxicity: zebrafish
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Simulated Oral Exposure (Gut on a Chip)

Ede et al. (2020). Physical, chemical and toxicological 
characterization of sulfated cellulose nanocrystals for 
food-related applications using in vivo and in vitro
strategies. Toxicology Research 9(6):808.

EFSA (2018). Guidance on risk assessment of the 
application of nanoscience and nanotechnologies in the 
food and feed chain: Part 1, human and animal health. 
EFSA Journal.

Raji B cell (R)

Caco-2 Enterocyte 
(C(E))

SIDE VIEW OF WELL PLATE

HT29-MTX 
Goblet cell (H)

Transwell 
Membrane

Apical 
Compartment

Basolateral 
Compartment

Caco-2 Microfold 
cell (C(M))

Nanocelluloses
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Gastrointestinal Model Barrier Integrity (TEER)
• Experiment:

2. Caco-2 and HT29 co-cultures were exposed for 4 h.

1. The barrier integrity was measured by using transepithelial/endothelial resistance (TEER). 

3. Decreased resistance is an indication of 
decreased barrier integrity.



20

Gastrointestinal Model Barrier Integrity (TEER)
• Experiment:

2. Caco-2 and HT29 co-cultures were exposed for 4 h.

1. The barrier integrity was measured by using transepithelial/endothelial resistance (TEER). 

3. Decreased resistance is an indication of 
decreased barrier integrity.

2. SCNF1_30, TCNF3.30, TCNF8.30, 
PCCNF0.5_9 had significantly lower 
TEER over 8 days post-exposure as 
compared to UT.

1. The positive control reduced the most 
resistance.

• Conclusion:

• Intervals that overlap with each other are not significantly different.

• Intervals that overlap with UT interval (gray region around dotted line) are not significantly different.

However, they were  
not significantly different from the VC.
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Effects of Cellulose Type and Concentration

• Experiment:

1. GI tri-culture model (Caco-2, Raji B and HT29) was exposed to different cellulose types at various concentrations 
for 15 min or 4 h.

2. Endpoints:

• Cell death – LDH assay

• Inflammation - Interleukin 6 (IL-6)

• Oxidative stress - Glutathione Reductase (GR) activity 

• Questions:

1. Does cellulose type affect response?

2. Does concentration have effects on response within the same cellulose type?



4 h
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Cell Death (by LDH) vs. Cellulose Type

15 min

• Method:

1. Estimated means with confidence intervals of LDH activity vs. various cellulose treatments.

• Intervals that overlap with each other are not significantly different.

• Conclusion:

1. At 15 min and 4 h exposure, TritonX (positive 
control) triggered significantly higher cell death as 
compared to all other groups.

2. No cellulose treatment induced significant cell 
death when compared to untreated cells (UT) at 
15 min and 4 h.

2. All measurements were normalized to LDH standard.
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Cell Death (by LDH) vs. Concentration

15 min 4 h

• Method:
1. Estimated slopes with confidence intervals of LDH activity vs. various        

treatment concentrations.

2. All measurements were normalized to LDH standard.

• Intervals that overlap with each other are not significantly different.

• Intervals that contain 0 are not significantly different from control group.

• Conclusion:
1. All treatment concentrations 

had no effect on cell death 
except TritonX at 15 min.

15 min 4 h
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Inflammation (IL-6) vs. Cellulose Type
• Method:

2. All measurements were normalized to untreated cells (UT).

1. Estimated means with confidence intervals of IL-6 (interleukin 6) vs. various cellulose treatments.

• Conclusion:

1. At 15 min exposure, SCNF1_30, PCCNF0.5-12, 
PCCNF0.5-0.5 and CNF decreased IL-6.

2. At 4 h exposure, all the TCNFs, SCNF1_30, and 
PCCNF0.5-0.5 reduced IL-6 while SCNF1.5_60_5 slightly 
increased IL-6.

15 min 4 h

• Intervals that overlap with each other are not significantly different.

• Intervals that contain 1 are not significantly different from control group (UT).

3. None of the treatments were significantly different 
compared to the vehicle control.
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Inflammation (IL-6) vs. Concentration
• Method:

• Conclusion:
1. All treatment concentrations 

had no effect on IL-6 except 
TCNF5.10 at 4 h.

15 min 4 h

15 min 4 h

2. All measurements were normalized to untreated cells (UT).

1. Estimated means with confidence intervals of IL-6 (interleukin 6) vs. various 
cellulose treatments.

• Intervals that overlap with each other are not significantly different.

• Intervals that contain 0 are not significantly different from control group (UT).
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Oxidative Stress (Glutathione Reductase) vs. Cellulose Type
• Method:

2. All measurements were normalized to untreated cells (UT).

1. GR activity was measured for the various cellulose treatments.

• Intervals that overlap with each other are not significantly different.

• Intervals that contain 1 are not significantly different from control group (UT).

• Conclusion:

1. At 15 min and 4 h exposure, TritonX (positive control) 
significantly inhibited the GR activity as compared to all other 
groups.

2. At 15 min exposure, TCNF8.30, SCNF1_30 and 1.25_45 
induced higher GR activity.

3. At 4 h exposure, all four TCNF and SCNF1.25_45 reduced 
GR activity.

15 min 4 h

4. At 4 h exposure, SCNF1.5_60_5 and 1.5_60_30 elevated 
GR activity as compared to UT but not significantly different 
from vehicle control.
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Oxidative Stress (Glutathione Reductase) vs. Concentration
• Method:

• Intervals that overlap with each other are not significantly different.

• Intervals that contain 0 are not significantly different from control group (UT).

• Conclusion:
1. At 15 min exposure, all 

treatment concentrations had 
no effect on cell death except 
Triton and SCNF1_30.

15 min 4 h

15 min 4 h

2. All measurements were normalized to untreated cells (UT).

1. GR activity was measured for the various cellulose treatments.

2. At 4 h exposure, GR activity 
decreased as cellulose 
concentration increased in 
TCNF8.30, TCNF3.30, 
SCNF1_30 and SCNF1.25_45.
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Life-Cycle Risk Assessment (LCRA) Development
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Summary
1. Synthesis of CNs with selected functionalized groups

2. Generate standardized safety methods and data sets

3. Build ‘Safer-by-Design’ Toolbox for next generation CN materials

• All materials have been successfully synthesized. 

• TEER, LDH, IL-6 and GR.

• Targeting 2023 for Toolbox rollout.

4. Future steps
• Apply toolbox to select safe form of CNs in food packaging applications.

• Additional toxicological assays and physiochemical characterization to further 
develop the toolbox.
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Thank you

Yueyang (Brian) Zhang, Ph.D.
Brian@VireoAdvisors.com

CHECK OUT OUR BLOG AT: 
WWW.VIREOADVISORS.COM/BLOG
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