International Conference on Nanotechnology for Renewable Materials

Safer by Design Toolbox to Advance Functionalized Cellulose-based Nanomaterials

Yueyang (Brian) Zhang, Kimberly Ong, James Ede, Ana Diges, You-Lo Hsieh, Mengzhe Guo, Ben Pingrey, Christie Sayes, James Liu, Amanda Sevcik, Clancy Collom, Nicole Stark, Robert Moon, Jo Anne Shatkin

14 JUNE 2023

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Cellulose

1. Most abundant biopolymer

2. Wood as source material

3. Applications

- 4. Cellulose-based nanomaterials (CNs)
 - Hydrophilic
 - Free hydroxyl group for surface modifications

cellulose

Cellulose Nanomaterials Food Safety Study

- 1. CNs behave similarly to conventional cellulose and raise no safety concerns when used as a food ingredient at 4% of diet.
- 2. Baseline measurements for examining potential impact of future functionalization on toxicity.

Animal S	tudies ^{1,3}	Cell-based Studies ^{2,3}		
Study	Result	Endpoint	Result	
Acute Oral Rat Toxicity				
7-day Oral Toxicity (OECD TG 407)	NO ADVERSE EFFECTS	Cytotoxicity In Co- Culture Model	NO ADVERSE EFFECTS	
14-day Oral Toxicity (OECD TG 407)	NO ADVERSE EFFECTS	Barrier Integrity Over 7-days	NO ADVERSE EFFECTS	
Sub-chronic Oral Rat To	oxicity	Oxidative Stress	NO ADVERSE EFFECTS	
90-day Oral Toxicity (OECD TG 408) NO ADVERSE EFFECTS		Inflammation	NO ADVERSE EFFECTS	

Surface Modifications and Applications

Table 1. Survey results - CN surface modifications and applications with high commercial potential.

Material	%	Functional group	%	Applications	%	
CNC	46%	TEMPO oxidized	27%	Packaging	35%	0
CNF	46%	Carboxylated	20%	Polymer and	26%	HOLOH
				composite		TEMPO
Hairy cellulose	4%	Alkylated	13%	Metal ion absorbant	13%	
Chitin	4%	Cationic	10%	Coating	9%	
		Sulfated	10%	Cosmetics	4%	C2/C3 Carboxy
		CarboxyImethylated	7%	Others		
		Others				но он

* TEMPO: 2,2,6,6-tetramethylpyperidine-1-oxyl

Key Questions

How changing the surface chemistry of CNs affects safety and regulatory acceptance?

Overarching Goal

Development of safer-by-design toolbox and life cycle risk assessment (LCRA) for the production of safe functionalized CNs.

P³Nano

Tool Box Methods & Data Development

Tool Box Methods & Data Development

Tool Box Methods & Data Development

Life-Cycle Risk Assessment (LCRA) Development

Interdisciplinary Approach to Safer by Design Toolbox

1. Synthesis of CNs with selected surface chemistries and in different geometric dimensions and aspect ratios.

2. Adapt non-animal testing protocols to assess cytotoxic response and inflammatory potential of surface-modified CNs.

3. Develop safer-by-design toolbox and life cycle risk assessment (LCRA).

Surface Functionalization

Synthesis of TEMPO-Oxidized Cellulose Nanofibrils (TCNFs)

Synthesis of TEMPO-Oxidized Cellulose Nanofibrils (TCNFs)

PCCNF by Periodate-Chlorite Oxidation

% Frequency

L: 452±162 nm

n=30

Thickness (nm)

L: 381±150 nm

n=30

Thickness (nm)

L: 533±275 nm

n=30

Thickness (nm)

L: 344±170 nm

n=30

UCDAVIS

16

Sulfation of CNF via Chlorosulfonic Acid (HSO₃Cl)

Alternative Testing Strategies (ATS)

• Reducing and replacing animal testing with ATS.

- ATS developed for safety assessment
 - Simulated oral exposure: gastrointestinal model
 - Simulated inhalation exposure: alveolar lung model
 - Dermal exposure: dermal and epidermal cells
 - Environmental toxicity: zebrafish

Mode(s)-of- action	Gut cell co-culture model	Cell death, inflammation, oxidative stress	
Structural endpoints	Gut cell co-culture model	Cellular morphology, barrier resistance	
Molecular pathways	Gut cell co-culture model	RNA-seq analyses	
	Zebrafish model		
Developmental endpoints	Zebrafish model	Coagulated eggs; somite formation; detached tail; heartbeat	

Simulated Oral Exposure (Gut on a Chip)

Gastrointestinal Model Barrier Integrity (TEER)

• Experiment:

- 1. The barrier integrity was measured by using transepithelial/endothelial resistance (TEER).
- 2. Caco-2 and HT29 co-cultures were exposed for 4 h.
- 3. Decreased resistance is an indication of decreased barrier integrity.

500

Gastrointestinal Model Barrier Integrity (TEER)

• Experiment:

- 1. The barrier integrity was measured by using transepithelial/endothelial resistance (TEER).
- 2. Caco-2 and HT29 co-cultures were exposed for 4 h.
- 3. Decreased resistance is an indication of decreased barrier integrity.
- Conclusion:
- 1. The positive control reduced the most resistance.
- 2. SCNF1_30, TCNF3.30, TCNF8.30, PCCNF0.5_9 had significantly lower TEER over 8 days post-exposure as compared to UT. However, they were not significantly different from the VC.

[•] Intervals that overlap with UT interval (gray region around dotted line) are not significantly different.

Effects of Cellulose Type and Concentration

• Questions:

1. Does cellulose type affect response?

2. Does concentration have effects on response within the same cellulose type?

• Experiment:

- 1. GI tri-culture model (Caco-2, Raji B and HT29) was exposed to different cellulose types at various concentrations for 15 min or 4 h.
- 2. Endpoints:
 - Cell death LDH assay
 - Inflammation Interleukin 6 (IL-6)
 - Oxidative stress Glutathione Reductase (GR) activity

Cell Death (by LDH) vs. Cellulose Type

• Method:

- 1. Estimated means with confidence intervals of LDH activity vs. various cellulose treatments.
- 2. All measurements were normalized to LDH standard.

Conclusion:

- 1. At 15 min and 4 h exposure, TritonX (positive control) triggered significantly higher cell death as compared to all other groups.
- No cellulose treatment induced significant cell death when compared to untreated cells (UT) at 15 min and 4 h.

• Intervals that overlap with each other are not significantly different.

EXP

4 h

15

10

Cell Death (by LDH) vs. Concentration

• Method:

- 1. Estimated slopes with confidence intervals of LDH activity vs. various treatment concentrations.
- 2. All measurements were normalized to LDH standard.

Conclusion:

1. All treatment concentrations had no effect on cell death except TritonX at 15 min.

15 min

15

10

Inflammation (IL-6) vs. Cellulose Type

• Method:

- 1. Estimated means with confidence intervals of IL-6 (interleukin 6) vs. various cellulose treatments.
- 2. All measurements were normalized to untreated cells (UT).

• Conclusion:

- 1. At 15 min exposure, SCNF1_30, PCCNF0.5-12, PCCNF0.5-0.5 and CNF decreased IL-6.
- 2. At 4 h exposure, all the TCNFs, SCNF1_30, and PCCNF0.5-0.5 reduced IL-6 while SCNF1.5_60_5 slightly increased IL-6.
- 3. None of the treatments were significantly different compared to the vehicle control.

• Intervals that overlap with each other are not significantly different.

EXP

PCCNF0.5-0.5 PCCNF0.5-12

PCCNF0.5-9

4 h

15 min

Inflammation (IL-6) vs. Concentration

• Method:

- 1. Estimated means with confidence intervals of IL-6 (interleukin 6) vs. various cellulose treatments.
- 2. All measurements were normalized to untreated cells (UT).

Oxidative Stress (Glutathione Reductase) vs. Cellulose Type

• Method:

- 1. GR activity was measured for the various cellulose treatments.
- 2. All measurements were normalized to untreated cells (UT).

• Conclusion:

- 1. At 15 min and 4 h exposure, TritonX (positive control) significantly inhibited the GR activity as compared to all other groups.
- 2. At 15 min exposure, TCNF8.30, SCNF1_30 and 1.25_45 induced higher GR activity.
- 3. At 4 h exposure, all four TCNF and SCNF1.25_45 reduced GR activity.
- 4. At 4 h exposure, SCNF1.5_60_5 and 1.5_60_30 elevated GR activity as compared to UT but not significantly different from vehicle control.

• Intervals that overlap with each other are not significantly different.

EXP

PCCNF0.5-0.5 PCCNF0.5-12

4 h

Oxidative Stress (Glutathione Reductase) vs. Concentration

• Method:

- 1. GR activity was measured for the various cellulose treatments.
- 2. All measurements were normalized to untreated cells (UT).

Conclusion:

- 1. At 15 min exposure, all treatment concentrations had no effect on cell death except Triton and SCNF1 30.
- 2. At 4 h exposure, GR activity decreased as cellulose concentration increased in TCNF8.30, TCNF3.30, SCNF1 30 and SCNF1.25 45.

15 min

Life-Cycle Risk Assessment (LCRA) Development

2. Assess Exposure Potential and Risk

3. Prioritize Data Gaps

4. Address Data Gaps (E.g., Toxicity Studies)

Output: Safety Demonstration

Summary

- 1. Synthesis of CNs with selected functionalized groups
 - All materials have been successfully synthesized.
- 2. Generate standardized safety methods and data sets
 - TEER, LDH, IL-6 and GR.
- 3. Build 'Safer-by-Design' Toolbox for next generation CN materials
 - Targeting 2023 for Toolbox rollout.
- 4. Future steps
 - Apply toolbox to select safe form of CNs in food packaging applications.
 - Additional toxicological assays and physiochemical characterization to further develop the toolbox.

Publications to Date

1.Ede, J.D.; Ong, K.J.; Mulenos, M.R.; Pradhan, S.; Gibb, M.; Sayes, C.M.; Shatkin, J.A. Physical, chemical, and toxicological characterization of sulfated cellulose nanocrystals for food-related applications using *in vivo* and *in vitro* strategies. *Toxicology Research*, 2020 December. <u>https://doi.org/10.1093/toxres/tfaa082</u>

2.Ong, K.J, Ede, J.D., Pomeroy-Carter, C.A., Sayes, C.M., Mulenos, M.R., Shatkin, J.A. (2020) A 90-day dietary study with fibrillated cellulose in Sprague-Dawley rats. *Tox Rep* 7: 174-182. DOI: 10.1016/j.toxrep.2020.01.003.

3.Patel, I., Woodcock, J., Beams, R., Stranick, S.J., Nieuwendaal, R., Gilman, J.W., Mulenos, M.R., Sayes, C.M., Salari, M., DeLoid, G., Demokritou, P., Harper, B., Harper, S., Ong, K.J., Shatkin, J.A., Fox, D.M. (2021). Fluorescently Labeled Cellulose Nanofibers for Environmental Health and Safety Studies. *Nanomaterials*, 11: 1015. <u>https://doi.org/10.3390/nano11041015</u>

4.Pradhan, S, George, M, Steele, L, Gibb, M, Ede, JD, Ong, KJ, Shatkin, J, Sayes, CM. 2020. Physical, chemical and toxicological characterization of fibrillated forms of cellulose using an in vitro gastrointestinal digestion and co-culture model. *Toxicology Research* 9(3): 290-301. <u>https://doi.org/10.1093/toxres/tfaa026</u>.

5.Gibb M, Pradhan S.H., Steele L.R, Mulenos M.R, Lujan H, Ede J.D, Ong K.J, Shatkin J.A., Sayes C.M. (2020) Characterization of an Intestinal Co-culture System: Seeding Density Matters. FASEB J. Submitted. Ong, KJ, Ede, JE. Cassidy A. Pomeroy-Carter, CA, Christie M. Sayes, CM, Marina R. Mulenos, MR, and JA Shatkin. 2020. A 90-day dietary study with fibrillated cellulose in Sprague-Dawley rats. *Toxicology Research*, 9(6): 808-822. https://doi.org/10.1093/toxres/tfaa082

6.Ede JD...Shatkin JA et al (2019) Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science, Nanomaterials. 9(3):337. https://doi.org/10.3390/nano9030337.

7.Roberts R...Shatkin JA (2018) Collection of airborne ultrafine cellulose nanocrystals by impinger with an efficiency mimicking deposition in the human respiratory system. *J Occup Environ Hygiene* DOI: 10.1080/15459624.2018.1540876

8.Foster EJ...Ong, KJ...Shatkin JA, et al. (2018) Review: Current characterization methods for cellulose nanomaterials. Chem Soc Rev. 47(8):2609-2679. DOI: 10.1039/C6CS00895J

9.DeLoid et al. (2017). An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. *Particle and Fibre Toxicology* 2017 14:40.

10.Ong KJ, Shatkin JA et al. (2017). Establishing the safety of novel bio-based cellulose nanomaterials for commercialization. NanoImpact, (6): 19-29. https://doi.org/10.1016/j.impact.2017.03.002

11.Shatkin, J.A., Ong, K.J., Ede, J.D., Wegner, T.H., Goergen, M. (2016). Toward Cellulose Nanomaterial Commercialization: Knowledge Gap Analysis for Safety Data Sheets According to the Globally Harmonized System. *TAPPI Journal*. 15:425.

12.McClements, D.J., DeLoid, G., Pyrgiotakis, G., Shatkin, J.A., Xiao, H., Demokritou, P. (2016). "The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps". *NanoImpact,* July 2016. (3-4); 47-57. http://dx.doi.org/10.1016/j.impact.2016.10.002

13.Shatkin J.A. and G. Oberdörster. 2016. Comment on Shvedova et al. (2016), "Gender differences in murine pulmonary responses elicited by cellulose nanocrystals". *Particle Fibre Toxicol* 13:59 https://doi.org/10.1186/s12989-016-0170-4

14.Shatkin, J.A. and B. Kim. (2015). Cellulose Nanomaterials: Life Cycle Risk Assessment, and Environmental Health and Safety Roadmap Environmental Science: Nano, (2):477-499. DOI: 10.1039/C5EN00059A

Acknowledgement

P³Nano, the U.S. Endowment for Forestry and Communities and the USDA US Forest Service Forest Product Laboratory (FPL)

The partners of the Alliance for the Food Safety Acceptance of Fibrillated and Crystalline Celluloses

Mitacs Elevate

TAPPI committee

The Vireo Team

P³Nano

The Vireo Team

Dr. Kimberly J.

is a biologist and

scientist. Dr. Ong is

developing protocols

improve reliability for

specific for novel

material testing to

risk and exposure

experienced in

assessment and is

regulatory analysis

for novel products.

Yueyang (Brian)

toxicologist and a

Zhang is a

post doctoral

University of

Alberta and a

with Vireo.

MITACS Fellow

fellow at

environmental

an expert in

Ona

Dr. Jo Anne Shatkin is an expert in novel product safety and environmental and health policy issues, with over 20 years experience leading projects in risk analysis, safety and regulatory policy work including numerous publications.

She is founder and president of Vireo Advisors in Boston,

Lauren Pavne is

a MPH student

University and

with a business

Vireo Intern

background.

at Boston

Massachusetts.

Kora Kukk is a fellow and a UMaine graduate with an M.S. in Biomedical Engineering.

Padmapriya Srinivasan is an intern and is pursuing a Bachelors of Science degree from Mount Allison University.

Dr. Shaun Clancy is a chemist with over 30 years experience in the chemicals industry, directing programs in health, safety, and regulatory affairs in major corporations. He is ANSI Co-Chair and participates in ISO TC229 and other international safety committees.

Wei Ng is an intern and is currently pursuing her PhD in **Biological and Biomedical Science** from Yale University.

Tatiana von

Rheinbaben is a

fellow and a M.S.

Environmental

Engineering

and Science

graduate of

Stanford

University.

Fiona Case is a content writer with more than 20 years experience covering scientific innovations in foods, personal and home care products. sustainability, and computer-aided materials design

Angel Precious-Egere is an intern and is pursuing a master's degree with a focus on antimicrobial nanotechnology.

32

Thank you

Yueyang (Brian) Zhang, Ph.D.

Brian@VireoAdvisors.com

CHECK OUT OUR BLOG AT: WWW.VIREOADVISORS.COM/BLOG

