International Conference on Nanotechnology for Renewable Materials

Safer-by-Design Toolbox to Advance Functionalized Cellulose Nanomaterials: Toolbox Development and Life Cycle Risk Assessment

Kora Kukk, James Ede, Yueyang Zhang, Angel Precious-Egere, Ana Diges, You-Lo Hsieh, Mengzhe Guo, Ben Pingrey, Christie Sayes, Amanda Sevcik, Clancy Collom, Nicole Stark, Jo Anne Shatkin

Toolbox Development Goals

1.Generate standardized safety methods and data sets for CNs

- Methods development
- Working toward standard test methods & regulatory acceptance

2.'Read-across' toxicity testing strategy for industrial and functionalized forms of CNs

3. Continue to develop 'Safer-by-Design' Toolbox for next generation CN materials

- Commercially-relevant forms
- Promote CN safety and regulatory acceptance for applications in food, food contact, cosmetics, *etc*.

About SbD Functionalization Too

2.5 Method of Environ. Tox Char

Structure of the Toolbox

The Toolbox is currently under development and organized into 10 worksheets, including an introduction to the Toolbox; an experimental overview; Compendium of physical, chemical and toxicological methods and protocols; as well as databases of physical, chemical and toxicological data generated to date for different cellulose surface chemistries.

2.2 Methods of Oral Tox. Charac

2.3 Method of Inhalation Tox. C

Tab 1.0 > About the Functionalization toolbox (goals, structure and organization and how to use)

- Tab 1.1> Experimental overview
- Tab 2.2-2.5 ➤ Methods and protocols (Pchem Characterization; oral, inhalation, dermal and environmental toxicity characterization)
- Tab 3.1-3.5 > Database (Pchem data, Oral, Inhalation, Dermal, Environmental toxicity data)

2.1 Methods of PChem. Character

Tab 4> Life Cycle Assessment

Experimental Overview

2.4 Method of Dermal Tox. Chara

Toolbox Methods & Data Development

Toolbox Includes Physical Chemical Characterization Methods

Physical and chemical characterization of cellulose suspensions. Physical and chemical tests were conducted

Endpoints

Vireo	Advisors,	LLC

on the twelve ce	liulose suspensions.				
		Characterization of Pristine cellulose nanomaterials			
Physio-chemical properties	Method	SOP	Link to SOP	Reference	Notes/Follow-up
Particle size, length and width	Atomic force microscopy (AFM)	The atomic force microscopy (AFM) technique was used for image analysis, specifically using an Asylum Research MFP-3D. OMCL-AC160TS standard silicon probes with a nominal tip radius of 7 nm and a spring constant of 26 N/m were used to conduct this analysis. To collect surface profiles, a few drops of diluted SCNF dispersion (approximately 0.0001 wt %) were placed on freshly cleaved mica discs, allowed to dry, and then analyzed under ambient conditions using tapping mode.	,		Review/Confirm with You- lo's manuscript on Pchem Characterization of "Pristine CNFs"
Thickness	Atomic force microscopy (AFM)	Sample suspension (10 mL, 0.002 wt%) was deposited onto a freshly cleaved mica surface, air- dried, scanned (Asylum-Research MFP-3D) in air under ambient condition using tapping mode with OMCL-AC160TS standard silicon probes. The scan rate was set to 1 Hz and image resolution is 512 * 512 pixels. The height images and profiles were processed with Igor Pro 6.21 loaded with MFP3D 090909 + 1409, and the average thickness was determined from ca. 200 individual nanofibrils.)	<u>Jiang, 2013</u> Patterson, 2020	
	Transmission electron microscopy (TEM)	Samples were prepared by placing a drop of diluted SMFC dispersion (ca. 0.0001 wt %) on a glow- discharged carbon grid and blotting away the excess after 10 min. Samples were negatively stained with 2 wt % uranyl acetate to enhance contrast. Micrographs were taken with a LaB6 electron source by using an accelerating voltage of 100 kV.	d	Pingrey, 2022	
Width	Transmission electron microscopy (TEM)	Sample suspension (8 ml, 0.01 wt%) was deposited onto glow-discharged carboncoated TEM grids (300-mesh copper, formvar-carbon, Ted Pella Inc., Redding, CA) with the excess liquid being removed by blotting with a filter paper after 10 min. The specimens were then negatively stained with 2% uranyl acetate solution for 5 min, blotted with a filter paper to remove excess staining solution and allowed to dry under the ambient condition. The samples were observed using a Philip CM12 transmission electron microscope operated at a 100 kV accelerating voltage. The width of CNFs was measured from ca. 200 individual nanofibrils using an image analyzer (ImageJ, NIH, USA). Again, a cut-off value of 5 nm was used for CNF1.5 and CNF3 to exclude the larger fibrils.		<u>Jiang, 2013</u>	
		Characterization of simulated digested cellulose materials			
Physio-chemical properties	Method	SOP	Link to SOP	Reference	Notes/Follow-up
Particle Size and Surface Charge Analysis	Dynamic light scattering with a Zetasizer Nanoseries Nano-ZS (Malvern Pananalytical, Almelo, Netherlands)	To determine the hydrodynamic diameter (HDD), dispersity index (DI), and zeta potential (ζ potential), DLS techniques were acquired with a Zetasizer Nanoseries Nano-ZS (Malvern Pananalytical, Almelo, Netherlands). A dilution of the stock solution was required for this analysis to ensure precision. Cellulose stock suspensions were diluted to 0.01% with ultrapure water and transferred to a disposable folded capillary cell DTS 1060 (Malvern Pananalytical, Almelo, Netherlands). For HDD and DI, each sample was scanned for 10 s, 11 times, in triplicate. A 173° backscatter angle was used in general purpose mode. For zeta potential measurements, the Helmholtz–Smoluchowski model was utilized at 25 runs, in triplicate, for each sample in auto report mode. Each sample had a mean count rate greater than 1000 counts per measurement to ensure accuracy.		<u>Pradhan et al.,</u> 2020	This was the only pchem characterization description outlined in the methodology section of Sayes manuscript, just wanted to confirm its related to "Pristine CMs" and not Digested forms.

Toolbox Includes Database of Physical Chemical Data

Physical and chemical properties of pristine CNs

For the sample identifiers (IDs), SCNF refers to sulfated CNF, TCNF refers to TEMPO CNF, and PCCNF refers to periodate-chlorite CNF. The a, b, c, and d notations represent four different functionalities within each CNF series. The stock concentrations were 1 w/v% for SCNF and 0.6 w/v% for TCNF and PCCNF.

Sample ID	Reagent, concentration (mmol/g), time (min)	Blending time (min)	Charge (mmol/g)	Width (nm)	Length (nm)
CNF					
SCNFa	HSO3Cl, 1, 30	30	1.49	3.2+0.9 n=56	693±330 n=166
SCNFb	HSO3Cl, 1.25, 45	30	1.84	4.0+1.0 n=73	577±294 n=175
SCNFc	HSO3Cl, 1.5, 60	5	2.23	3.2+0.7 n=103	501±295 n=100
SCNFd	HSO3Cl, 1.5, 60	30	2.23	NA	365±194 n=100
TCNFa	NaClO, 3, 30	30	1.1	6.5±2.2 n=50	551±200 n=50
TCNFb	NaClO, 5, 50	10	1.42	6.1±1.6 n=47	486±174 n=50
TCNFc	NaClO, 5, 60	30	1.42	4.6±1.6 n=30	530±145 n=50
TCNFd	NaClO, 8, 80	30	1.48	4.9±2.0 n=50	486±206 n=50
PCCNFa	NaIO4, 3.08, 4; NaClO2, 6.16, 30	30	0.72	5.9±1.6 n=50	452±162 n=30
PCCNFb	NaIO4, 3.08,4 NaClO2, 6.16, 9h	30	0.82	5.7±1.6 n=47	533±275 n=30
PCCNFc	NaIO4, 3.08, 4; NaClO2, 6.16, 12h	30	0.91	5.5±1.6 n=30	381±150 n=30
PCCNFd	NaIO4, 4.62, 4; NaClO2, 6.16, 6h	30	1.04	5.6±1.7 n=50	344±170 n=30

Vireo Advisors, LLC UCDAVIS

Physical and chemical characterization before and after simulated digestion

The table reports the average hydrodynamic diameter (HDD) \pm the standard deviation, dispersity index (DI) for each digestion period. No other statistical significance was observed.) DIs (DI) \pm the standard deviation, and zeta potential (ZP) \pm the standard deviation. *P < 0.05 for unmodified CN against all functionalized forms in ultrapure water and after simulated digestion.

	Ir	n ultrapure water		After simulated digestion			
Sample ID	HDD (nm)	DI (unitless)	ZP (mV)	HDD (nm)	DI (unitless)	ZP (mV)	
CNF	$14,400 \pm 104$	0.827 ± 0.16	-33.1 ± 0.945	977 ± 154	0.750 ± 0.068	-25.2 ± 0.321	
SCNFa	846 ± 250	0.965 ± 0.061	-61.2 ± 6.59	436 ± 32.4	0.453 ± 0.052	-39.1 ± 2.12	
SCNFb	1,170 ± 322	0.978 ± 0.038	-36.6 ± 3.66	403 ± 17.5	0.498 ± 0.032	-46.2 ± 0.265	
SCNFc	1,440 ± 217.3	0.980 ± 0.035	-60.9 ± 3.74	522 ± 23.52	0.526 ± 0.123	-38.8 ± 1.42	
SCNFd	602 ± 40.6	0.886 ± 0.054	-57.3 ± 1.89	477 ± 51.43	0.602 ± 0.02	-39.6 ± 1.42	
TCNFa	$1,160 \pm 167.4$	0.998 ± 0.002	-53.9 ± 0.643	489 ± 63.23	0.551 ± 0.05	-37.9 ± 1.25	
TCNFb	1,440 ± 217.3	0.980 ± 0.035	-60.9 ± 3.74	522 ± 23.52	0.526 ± 0.123	-38.8 ± 1.42	
TCNFc	602 ± 40.6	0.886 ± 0.054	-57.3 ± 1.89	477 ± 51.43	0.602 ± 0.02	-39.6 ± 1.42	
TCNFd	625 ± 53.75	0.867 ± 0.084	-53.2 ± 3.57	455 ± 35.29	0.540 ± 0.029	-41.6 ± 0.643	
PCCNFa	$1,160 \pm 167.4$	0.998 ± 0.002	-53.9 ± 0.643	489 ± 63.23	0.551 ± 0.05	-37.9 ± 1.25	
PCCNFb	1,440 ± 217.3	0.980 ± 0.035	-60.9 ± 3.74	522 ± 23.52	0.526 ± 0.123	-38.8 ± 1.42	
PCCNFc	602 ± 40.6	0.886 ± 0.054	-57.3 ± 1.89	477 ± 51.43	0.602 ± 0.02	-39.6 ± 1.42	
PCCNFd	625 ± 53.75	0.867 ± 0.084	-53.2 ± 3.57	455 ± 35.29	0.540 ± 0.029	-41.6 ± 0.643	

Atomic force microscopy (AFM)

Toolbox Includes Alternative Testing Strategies (ATS)

ATS developed for safety assessment

• Simulated inhalation exposure: alveolar lung model

• Simulated oral exposure: gastrointestinal model

- Dermal exposure: dermal and epidermal cells
- Environmental toxicity: zebrafish

Toolbox Includes ATS Methods & Protocols

E.g. Oral Exposure Safety Assessments

8

Toolbox Includes Database of Safety Data

(A) Controls @ 15 min

Cellular pro-inflammatory response

4-hr exposure

and and a state of a s

and and the and and the set and and and and

PCCNE0.5-12 PCCNE0.5-9 PCCNE0.5-0

Strates 5th 8th 82th

BCCHED TE A

15-min exposure

J.S.S.F. J.S.S.F. J.S.F.

58° 58° 58°

PCCNF0.5-9

8 2

Cellular oxidative stress response

Cytoplasmic membrane integrity TCNF

(C) SCNF @ 15 min

(D) TCNF @ 15 min

(E) PCCNF @ 15 min

2% CNF

RAW DATA PCC SCNF1. PCCN NF PCCN PCCNF SCNF1. SCNF PCCN PCCN PCCN TCNF3. TCNF5 TCNF TCNF SCNF SCNF1. SCNF1.5 5 60 3 F 0.5- 0.5- F 0.5- 0.75-1% 2% TCNF8. SCNF1 SCNF1. 5 60 1.5 6F 0.5- F 0.5- F 0.5- 0.75-TCNF3 TCNF5 Concen 8.30 1 30 25 45 60 5 0.5H 12H 6H CNF CNF 10 30 25 45 1% CNF 2% CN 15 min 4hrs 1% х Х х х х 6.76 6.25 4.77 0.92 1.95 3.06 2.72 2.01 1.06 0.6% 1.89 1.08 2.83 x 2.44 3.4 2.58 2.2 0.92 1.95 3.06 2.72 2.01 1.06 2.25 1.08 7.27 4.26 х Viability (LDH) 2.03 1.25 2.63 2.57 2.5 3.09 1.85 2.69 0.4% 1.11 1.8 2.46 1.89 2.01 1.98 2.75 1.25 6.13 8.08 6.06 7.14 5.74 4.45 1.11 1.8 2.46 1.89 2.01 1.98 0.2% 2.22 2.84 1.87 2.25 2.64 2.54 2.28 2.46 0.91 0.56 1.73 0.4 1.27 3.45 2.84 2.31 5.77 6.76 5.74 7.67 0.6 0.91 0.56 1.73 0.4 1.27 0.6 5 1% х х х х х х х х Oxidative 0.6% 1.31 1.01 1.44 x 0.92 1.15 1.49 1.15 1.04 0.95 1.27 1.3 1.04 1.03 1.2 1.08 0.84 0.58 1.08 0.84 1.35 1.19 1.08 1.12 1.12 1.3 0.9 Stress (GR) 0.4% 1.17 1.04 1.44 1.01 1.3 1.46 1.21 1.22 0.88 0.99 1.34 1.37 1.24 1.06 0.77 0.72 1.33 1.34 1.39 0.96 1.24 1.14 1.17 0.58 0.95 0.75 0.79 0.84 0.2% 1.33 1.04 0.98 x 1.2 1.39 1.37 1.05 1.06 1.25 1.42 1.26 0.85 1 0.92 0.72 0.76 0.69 0.67 0.95 0.51 1.31 1.39 1.12 1.14 1.05 1.04 NOEC

	Post-exposure time	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8
	Untreated	111	153	201	302	318	394	418	412
	Vehicle control (SGF)	110	115	158	293	294	279	344	366
	50 μM rotenone (pos control)	186	128	105	96	137	181	153	115
Post-exposure timeDay 1Day 2Day 3Day 4Day 5Day 6Day 71Untreated1111532013023183944181Vehicle control (SGF)1101151582932942793441S0 µM rotenone (pos control)186128105961371811531532% CNF 1% SCNF1.301141432943033914184471471% SCNF1.25_45961152312503263373573641641% SCNF1.30114116210250326337357364364375364364375364364375364364375364364375364364375364364375364364375364364375364364375364364375364364375364364375364365364364375365364364375365364365364365364365364365364365366	455								
	Post-exposure time Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Untreated 111 153 201 302 318 394 418 412 Vehicle control (SGF) 110 115 158 293 294 279 344 366 50 µM rotenone (pos control) 186 128 105 96 137 181 153 115 2% CNF 114 143 294 303 391 418 447 455 1% SCNF1_30 114 16 210 250 326 337 357 366 1% SCNF1_30 114 139 228 258 316 346 375 353 0.6% TCNF5.30 116 134 226 243 291 321 336 322 0.6% TCNF5.30 138 154 271 291 347 370 371 366 1% SCNF1.5_60_30	366							
	1% SCNF1.25_45	96	115	231	259	335	376	394	374
	Post-exposure time Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 7 Untreated 111 153 201 302 318 394 418 4 Vehicle control (SGF) 110 115 158 293 294 279 344 3 50 µM rotenone (pos control) 186 128 105 96 137 181 153 1 2% CNF 114 143 294 303 391 418 447 4 1% SCNF1.25_45 96 115 231 259 335 376 394 33 0.6% TCNF8.30 114 139 228 258 316 346 375 33 0.6% TCNF5.30 138 154 245 270 316 333 389 44 0.4% TCNF5.10 134 154 271 291 347 370 371 33 1% SCNF1.5_60_5 142	353							
ellular barrier	0.6% TCNF3.30	116	134	226	243	291	321	336	322
Post-exposure time Day 1 Day 2 Day 3 Untreated 111 153 201 Vehicle control (SGF) 110 115 158 S0 µM rotenone (pos control) 186 128 105 2% CNF 114 143 294 1% SCNF1_30 114 116 210 1% SCNF1_5_45 96 115 231 0.6% TCNF8.30 114 139 228 0.6% TCNF5.30 116 134 226 0.6% TCNF5.30 138 154 245 0.4% TCNF5.10 134 154 271 1% SCNF1.5_60_5 142 187 192 1% SCNF1.5_60_30 126 158 170 0.6% PCCNF0.5_9 146 168 182 0.6% PCCNF0.5_12 127 161 199 0.6% PCCNF0.5_12 154 191 217	0.60% TCNF5.30	138	154	245	270	316	333	389	424
	291	347	370	371	366				
	1% SCNF1.5_60_5	142	187	192	307	360	387	402	392
	1% SCNF1.5_60_30	126	158	170	337	363	409	413	403
	0.6% PCCNF0.5_9	146	168	182	309	303	327	377	352
	0.6% PCCNF0.5_0.5	128	158	183	314	320	359	381	359
	0.6% PCCNF0.5_12	127	161	199	370	365	391	416	393
	0.6% PCCNF0.75_6	154	191	217	303	307	356	368	354

0.6% PCCNE0.5 9 0.67

(B) CNF @ 15 min

Life-Cycle Risk Assessment (LCRA)

- 1. LCRA is an iterative and adaptive screening-level risk assessment framework
- Develop qualitative exposure scenarios that describe potential exposures impacting workers, the public or the environment based on intended use across the product life-cycle.
- These scenarios are ranked by applying exposure criteria to identify priority pathways for evaluation.
- The risk assessment uses simplified worst-case assumptions.
- Each iteration identifies what information is needed to make a better decision.

Life Cycle Risk Analysis Application of Toolbox to Demonstrate Safety of Priority Commercial CN Forms and Applications

			mayonnaise bectored
CS1 : Carboxylated CNF Water Filtration Membranes	CS2.1 : Carboxylated CNF Food Packaging	CS2.2 : Sulfated CNF Food Packaging	CS3 : Carboxylated CNF Food Additive
			11

Life-cycle Mapping & Exposure Scenario Development

	Manufacture of sulfated/carboxylated cellu	lose 'nanopaper' food packaging case study
Life-cycle stage	Activity	Assumptions (By Life Cycle Stage)
Raw Material	The starting material is chipped or shredded wood, obtained from lumber mills.	Assumes no cellulose nanomaterial is produced.
Product Manufacturing	The raw material is treated and processed according to the specific Case Study chemistry.	Assume sulfated and carboxylated cellulose production. Assume original batch formulation made is 2% C-CN and S-CN suspension. This stage takes place indoors with limited environmental release.
Product Application	CS2.1 follow a simple casting method, where the CNM dispersion is simply left to dry on a die to produce a film. CS2.2 instead sprays this dispersion onto a food packaging substrate to form a coating.	Assumes at least one transportation step to another facility or designated manufacturing space. (Possible) redispersion step from powder form. Loose powder exposures are possible. Assume casting 2% or greater concentration wet suspension, then left to cure/dry (up to 100%). This stage takes place indoors with limited environmental release.
Product Use	Intended to be single-use products.	Assumes intended use and practices will result in lower hazard (nanoparticles better bound in matrix) and frequency (assumes user will practice correct packaging use).
Re- use/Recycling	Remain in use beyond their recommended lifespan or modified through a variety of repurposing activities for use in new consumer products.	Assumes one transportation activity to remanufacturing facility. Dilution of the C-CN and S-CN product with other substances during new product formulation activity accounts for a lower magnitude of potential exposure.
Disposal	The original or reprocessed CNM products are disposed of as waste.	Consumer products are likely to end up in a landfill or incinerated for heat recovery. The products may also be discarded intentionally or unintentionally in an uncontrolled environment.

Scenario Development

• Sulfated/carboxylated cellulose 'nanopaper' food packaging

Life Cycle Stage	LC Stage	LC Stage	Scenario #	Scenario	Receptor	Exposure Route
Raw Material	RM	# 1	# 1	Harvesting, chipping/shredding softwood	occupational	
Product Manufacturing	РМ	2	1	Cleaning out synthesis equipment	occupational	inhalation
Product Manufacturing	РМ	2	2	Cleaning out synthesis equipment	occupational	dermal/eye
Product Manufacturing	РМ	2	3	Cleaning out synthesis equipment	environmental	direct
Product Manufacturing	РМ	2	4	Incidental release of cellulose nanomaterial from synthesis equipment	occupational	inhalation
Product Manufacturing	РМ	2	5	Incidental release of cellulose nanomaterial from synthesis equipment	occupational	dermal/eye
Product Manufacturing	РМ	2	6	Incidental release of cellulose nanomaterial from synthesis equipment	environmental	direct
Product Manufacturing	РМ	2	7	Accidental spill of cellulose nanomaterial from synthesis equipment	occupational	inhalation
Product Manufacturing	РМ	2	8	Accidental spill of cellulose nanomaterial from synthesis equipment	occupational	dermal/eye
Product Manufacturing	РМ	2	9	Accidental spill of cellulose nanomaterial from synthesis equipment	environmental	direct
Product Manufacturing	РМ	2	10	Dried formulation extraction and handling (for powder NC ingredients)	occupational	inhalation
Product Manufacturing	РМ	2	11	Dried formulation extraction and handling (for powder NC ingredients)	occupational	dermal/eye
Product Manufacturing	PM	2	12	Dried formulation extraction and handling (for powder NC	environmental	direct

CS2.2: Sulfated CNF Food Packaging

CS2.1: Carboxylated CNF Food Packaging

Exposure Scenario Ranking

- 1. Scenarios are ranked based on hazard and exposure potential to determine overall relative risk.
- 2. Exposure estimates are then developed where possible, with focus on the highest priority pathways.
- 3. Four dimensions of exposure were used as a screen to rank the developed exposure scenarios.
 - 1) Directness of exposure, which relates to potential for direct contact of MFC (i.e., how easily are particles released);
 - 2) Magnitude, which relates to relative size of exposures based on percentage of MFC;
 - 3) Likelihood, which prioritizes intentional exposures over unintentional or accidental ones; and
 - 4) Frequency, an estimate of how often an exposure is expected.

	Directness of exposure	Magnitude	Likelihood	Frequency
Low (1)	Covalently bound MFC in substrate.	Exposure is to article where one component is <u><</u> 1% MFC.	Direct contact mitigated.	Infrequent—Exposure possible < 10 times per year.
Medium (2)	MFC potentially releasable from substrate.	Exposure to material > 1% to <u><</u> 10% MFC.	Unintentional— exposure possible based on activity.	Incidental—Use 10-50 times per year.
High (3)	Dried MFC in powder form.	Exposure to material > 10% MFC.	Intentional—repeat exposure during normal use.	Regular—Greater than 50 times per year.

Exposure Scenario Ranking

• Sulfated/carboxylated cellulose 'nanopaper' food packaging

Life Cycle Stage	LC Stage Code	LC Stage #	Scenaric #	Scenario	Receptor	Exposure Route	Hazard Potential	Magnitude	Likelihood	Frequency	Score
Product Manufacturing	PM	2	10	Dried formulation extraction and handling (for powder CN ingredients)	occupational	inhalation	3	3	3	3	12
Product Manufacturing	PM	2	11	Dried formulation extraction and handling (for powder CN ingredients)	occupational	ingestion/dermal/eye	3	3	3	3	12
Product Application	ΡΑ	3	7	S/C-CN rehydration (if powder CN ingredient)	occupational	inhalation	3	3	3	3	12
Product Application	PA	3	8	S/C-CN rehydration (if powder CN ingredient)	occupational	ingestion/dermal/eye	3	3	3	3	12
Product Application	ΡΑ	3	20	S/C-CN drying (film formation)	occupational	ingestion/dermal/eye	2	3	3	3	11
Product Application	PA	3	22	Surface treatment of S/C-CN film (hot press, wax coating, other)	occupational	ingestion/dermal/eye	2	3	3	3	11
Product Application	PA	3	24	Physical treatment of S/C-CN film (e.g. forming, bending, other)	occupational	ingestion/dermal/eye	2	3	3	3	11
Product Use	PU	4	1	Food packaging use (release, migration)	consumer	ingestion	2	3	3	3	11
Product Use	PU	4	3	Food packaging handling/interaction (release)	consumer	dermal/eye	2	3	3	3	11
Re-use/Recycling	RR	5	2	Collection and transport to re-use facility of used food packaging	occupational	ingestion/dermal/eye	2	3	3	3	11
Re-use/Recycling	RR	5	5	Physical breakdown of used food packaging (e.g. tearing)	occupational	ingestion/dermal/eye	2	3	3	3	11
Re-use/Recycling	RR	5	8	Chemical breakdown of used food packaging (e.g. pulping)	occupational	ingestion/dermal/eye	2	3	3	3	11
Re-use/Recycling	RR	5	12	Composting used food packaging	environmental	direct	2	3	3	3	11
Re-use/Recycling	RR	5	14	Bio-conversion (anaerobic digestion)	occupational	ingestion/dermal/eye	2	3	3	3	11
Disposal	D	6	2	Collection and transport to final end-of-life location	occupational	ingestion/dermal/eye	2	3	3	3	11
Disposal	D	6	6	Long-term MSW landfill storage	environmental	direct	2	3	3	3	11

Application of the Toolbox for Hazard Assessment

- 1. Toolbox aims to characterize hazards of functionalized forms by compiling database of physical, chemical, and toxicological data. Database for several surface chemistries already populated.
- 2. Goal is to use the toolbox to 'group' materials and 'read-across' safety data using the high-throughput/ATS methods in the toolbox.
 - Similar physicochemical characteristics
 - Act and behave similarly biologically or in the environment
 - E.g. Following simulated oral exposure in the gastrointestinal tract: cell viability, inflammation, oxidative stress, gut barrier integrity
 - Read-across via grouping to substantial database of safety studies available for conventional cellulose
 - Evaluation of safety of new surface functionalizations using grouping & read-across without expensive and time consuming animal testing.
- 3. Pre-commercial assessment, which can be used to inform safe- and sustainable by design considerations for new forms of cellulose

Life-Cycle Risk Analysis (LCRA)

- 1. Toolbox methods and data will be used to evaluate hazards, which is used in LCRA to evaluate the safety of next generation of CNs.
- 2. Current status: Toolbox oral exposure toxicity data received; being incorporated into LCRA analysis

Toolbox Next Steps:

- Finish toolbox development
 - Additional toxicological assays (inhalation, dermal, environmental exposures)
 - Build database of developed physical, chemical, and toxicological data
 - LCRA methodology demonstrating application of the toolbox to demonstrate safety
 - Make toolbox publicly available
- Finish LCRA case studies demonstrating application of the toolbox to evaluate safety of carboxylated and sulfated CNs for applications as food contact materials, food additives, and chemical applications (e.g. water filtration)
- Standardize and publish safety methods; data
- Build methods and data sets for NEXT GENERATION of modified materials
- Promote commercial and regulatory acceptance for these applications
 - Fill data gaps
 - Build 'safer-by-design' considerations and recommendations into Toolbox

Acknowledgement

P³Nano, the U.S. Endowment for Forestry and Communities and the USDA US Forest Service Forest Product Laboratory (FPL).

The partners of the Alliance for the Food Safety Acceptance of Fibrillated and Crystalline Celluloses

TAPPI Nano Division

The Vireo Team

P³Nano

The Vireo Team

Dr. Kimberly J.

is a biologist and

scientist. Dr. Ong is

developing protocols

improve reliability for

specific for novel

material testing to

risk and exposure

experienced in

assessment and is

regulatory analysis

for novel products.

Yueyang (Brian)

toxicologist and a

Zhang is a

post doctoral

University of

Alberta and a

with Vireo.

MITACS Fellow

fellow at

environmental

an expert in

Ona

Dr. Jo Anne Shatkin is an expert in novel product safety and environmental and health policy issues, with over 20 years experience leading projects in risk analysis, safety and regulatory policy work including numerous publications.

She is founder and president of Vireo Advisors in Boston,

at Boston

Massachusetts.

and is experienced in life cycle risk assessment.

Kora Kukk is a fellow and a UMaine graduate with an M.S. in Biomedical Engineering.

Padmapriya Srinivasan is an intern and is pursuing a Bachelors of Science degree from Mount Allison University.

Dr. Shaun Clancy is a chemist with over 30 years experience in the chemicals industry, directing programs in health, safety, and regulatory affairs in major corporations. He is ANSI Co-Chair and participates in ISO TC229 and other international safety committees.

Wei Ng is an intern and is currently pursuing her PhD in **Biological and Biomedical Science** from Yale University.

Tatiana von

Rheinbaben is a

fellow and a M.S.

Environmental

Engineering

and Science

graduate of

Stanford

University.

Fiona Case is a content writer with more than 20 years experience covering scientific innovations in foods, personal and home care products. sustainability, and computer-aided materials design

Angel Precious-Egere is an intern and is pursuing a master's degree with a focus on antimicrobial nanotechnology.

20

Lauren Pavne is a MPH student University and Vireo Intern with a business background.

Thank you

Kora@VireoAdvisors.com

CHECK OUT OUR BLOG AT: WWW.VIREOADVISORS.COM/BLOG

