International Conference on Nanotechnology for Renewable Materials

Cellulose Nanomaterials Isolated via Subcritical Water Treatment

Ruby Osei-Bonsu, Mahfuzul Hoque, Philip S. McMichael, E. Johan Foster

Bioproducts Institute Department of Chemical and Biological Engineering University of British Columbia

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA

Nanocellulose: Sources and Applications

Nanocellulose Production

Recent production routes for cellulose nanocrystals

Nanocellulose Production

Recent production routes for cellulose nanocrystals

J. Wang et al., Journal Of Biomaterials Science, Polymer Edition 2019, Vol. 30, No. 11, 919–946

Subcritical Water Technology

- Hydrothermal treatment uses hot water
- Requires sufficient pressure to maintain water as liquid (0.1- ~30 MPa)
- Temperatures < 374 °C subcritical water</p>
- Temperatures > 374 °C supercritical water

Several advantages

- Green process
- Relatively cheap
- Process is recoverable

5

Subcritical Water Properties

Physical properties of subcritical water

Subcritical Water Conversion of Biomass

A. Shitu et al., Global J. Environ. Sci. Manage., 1(3): 255-264, Summer 2015

Research Objectives

Main aim

To produce cellulose nanocrystals from controlled digestion of woody biomass using subcritical water as the solvent

Objectives

Investigate the tunability of the nanocellulose properties produced with varying subcritical water conditions (temperature and time)

Benchmark these properties against conventionally acid hydrolyzed nanocellulose

8

Experimental Method

Physical Observation

Change in whiteness with increasing temperature

135 °C - 60 mins 150 °C - 60 mins 120 °C - 60 mins 170 °C - 60 mins

No visible change in coloration at low temperature

10

SC treatment at

Subcritical Water Cellulose Digestion

- Glycosidic bond breaking
- Dissolution of amorphous regions
- Increase in crystallinity

- Loss of water molecules from fibre
- Formation of water-soluble saccharides
- Reduced crystallinity

Chemical Characterization

> No visible change in the chemical composition of cellulose

Fiber Digestion in Subcritical Water

Particle Size Distribution

14

Particle Morphology

- > All particles are rod-like regardless of reaction condition
- Homogeneous particle sizes observed at higher temperatures

Bulk Properties-X-ray Diffraction

- Crystalline structure is cellulose I
- > Apparent crystallinity:

$$CI = \frac{I_{200} - Iam}{I_{200}} \times 100\%$$

- Overall increase in pulp crystallinity after subcritical water treatment
- Crystallinity influenced by subcritical water temperature

Bulk Properties-Thermogravimetric Analysis

Surface Charge Measurement

- Dictates the dispersibility of CNCs in composite applications
- Little or no surface groups observed for SC-CNCs
 - Very low amounts of acid used
 - Large water volume
- Charged density may be improved through:
 - Post hydrolysis surface modifications
 - Perform hydrolysis with acid blends

Benchmarking Properties of SC-CNCs

Physical Properties of CNCs

Bulk Properties of CNCs

SC: Subcritical water hydrolyzed ; S: Sulfuric acid hydrolyzed ; P: Phosphoric acid hydrolyzed

19

Conclusions

- Investigated subcritical water technology for CNC production
- Isolated CNCs properties are comparable to acid hydrolyzed CNCs
- Improve colloidal stability with esterifying agents
- > Water as the main reaction reagent:
 - reduces use of toxic chemicals
 - produces cleaner effluents
 - reduces cost of chemicals
 - presents a cost-effective process

International Conference on Nanotechnology for Renewable Materials

Foster's Advanced Materials Group

12-16 JUNE 2023 • VANCOUVER, B.C. CANADA