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About me

Lam Tan Hao
• Vietnamese student at Korea University 

of Science and Technology (UST)

• Researcher at Center for Bio-based 
Chemistry, Korea Research Institute of 
Chemical Technology (KRICT) in Ulsan

• Academic background: Biotechnology

• Research projects:

• Bio-based nanocomposites

• Natural nanomaterials for biomedical 
applications
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Our research group: KRICT Biopolymer at Ulsan, South Korea

• ACS Nano, 2019, 13:3796
• Carbohyd Polym, 2019, 205:392
• Int J Biol Macromol, 2019, 125: 660

• RSC Adv, 2018, 8:15389
• Sci Rep, 2016, 6: 23245
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Outline

Why did we fabricate the bio-based composites?

 How did we do that?

What are the properties of the composites?



Polymers

• Synthetic polymers: poly(ethylene glycol) (PEG); 
poly(vinyl alcohol) (PVA); poly(lactic acid) (PLA); 
poly(methyl methacrylate) (PMMA); poly(ethylene 
oxide) (PEO); natural rubber latex; polyamide (PA): 
nylon 66, nylon 610, nylon 1010

• Natural polymers: cellulose, chitosan, gelatin, silk, 
alginate, fibrin, starch, collagen, agarose

Inorganic nanoparticles

ClayMetal-based Carbon-based

Graphene Carbon
nanotube

+

Chem Soc Rev, 2011, 40:696;
Adv Funct Mater, 2018, 28:1704158 

Inorganic nanocomposites
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• Health problems

• Non-pyrolyzed, fine particulates are generated 
when burning inorganic nanocomposites. 
(Chemosphere, 2010, 80:193)

• Exposure to the particulates leads to 
pulmonary effects, inflammation, and cancer. 
(Biointerphases, 2007, 2:MR17; Science, 2006, 311:622)

• Technical problems

• Inorganic nanoparticles are poorly dispersed in 
polymeric matrices due to density difference 
and weak interfacial interaction.

Nanotoxicity due to overproduction of 
free radicals (oxidative stress)

Front Pharmacol, 2017, 8:606

Limitations of inorganic nanomaterials
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Bio-nanomaterials

• Excellent mechanical properties

• Abundant

• Biodegradable

• Biocompatible

• Sustainable
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ACS Appl Mater Interfaces, 2014, 6:6127; 
Science, 2008, 319:1816; 

Arthropod Struct Dev, 2004, 33:187; 
Carbohydr Polym, 2019, 205:392

Tough, bio-inspired hybrid materials

7



Solution
Blending

In situ
interfacial

polymerization

Schematic illustration 
for preparation 

of nylon 66 
nanocomposites
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Organic phase (1,2-dichlorobenzene)

In situ Nylon 66/CNC and Nylon 66/CSW nanocomposite: I-NCn and I-NSn

Filler loading: n = 0.1–0.5 wt% per total mass of the nanocomposite

Formic acid
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Solution-Blended Nylon 66/CNC and Nylon 66/CSW nanocomposite: B-NCn and B-NSn
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Processing and characterization of nylon 66 nanocomposite films

Solvent evaporation 
• Fast: for 2 days
• Slow: for 5 days

6.5 wt% nylon 66 solution 
(formic acid)

Cut into a 
dumbbell 
specimen

Slow-evaporated 
nylon 66 film

2 cm
2 cm

Solution 
casting

 Film processing
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 Film characterization
• Mechanical properties
• FTIR
• SEM
• Others (ongoing): TGA, DSC, XRD…

 Effect of solvent evaporation rate

• The retarded evaporation rate of formic acid 
increased the mechanical properties of the film.
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• In situ films:

• Both nanofillers increased Young’s 
modulus (E) and tensile strength (σ)
but reduce the elongation at break 
(εb).

• Optimal loading: 0.4 wt%.

• Solution-blended films:

• CNC showed a similar trend as in in situ
films.

• CSW increased all the mechanical 
parameters.

• Optimal loading: 0.4 wt% (CNC) and 0.5 
wt% (CSW)

 different kinds and/or degree of 
interactions between CNC and CSW with 
nylon 66 

Mechanical properties of the films
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• Ionization of CSW during film 
processing of solution-blended Ny/CSW 
samples (FTIR and titration assay)

• Weaker CSW-nylon 66 interaction

•  Lower modulus and higher 
elongation at break of B-NS series
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• Fundamental peaks of nylon 66

• N–H stretching (3295–3300 cm−1)

• C=O stretching (~1631 cm−1)

• In-plane N–H deformation (1530–1550 
cm−1) (not shown)

• Shift of amide CO from 1631 cm−1 to a 
lower wavenumber  possible hydrogen 
bonding with the nanofiller OH groups 
(Polymer 2016, 101:75; RSC Adv, 2016, 6:87405; 
Biophys J, 2005, 88:2833)

• Extra peaks within 950–1150 cm−1

FTIR spectra of nylon 66 nanocomposites
I-NC I-NS

B-NC B-NS
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SEM images of tensile-fractured films (pristine samples)

2 cm

Grip surface

Whitening area

Tensile-fractured 
cross-section

10 μm 5 μm20 μm

10 μm 5 μm5 μm

• Fast evaporated film  non-
continuous, highly porous, bead-like 
surface, entangled fibers

• Slow evaporation  continuous 
surface, regularly aligned fibers

 Fast evaporated film

 Slow evaporated film



10 μm

5 μm

5 μm

5 μm

5 μm

10 μm

 Ny/CNC

SEM images of tensile-fractured films (in situ samples)

 Ny/CSW

• Rougher surface than the pristine 
film

• Uniaxial stretch-induced 
alignment of nylon 66 fibers 
ordered self-assembly of polymer 
chains during the film processing

• The polymer is highly deformed 
across the fractured surface with 
different fracture propagation.
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SEM images of tensile-fractured films (solution-blended samples)

• In solution blended Ny/CSW 
films:

• Plastic deformation occurs 
extensively along the stress 
direction

• Microvoid formation 
“stabilizes” the deformation 
 higher elongation at break

 Ny/CNC

 Ny/CSW



16

• Nature-inspired nylon nanocomposites with cellulose nanocrystals or chitosan nanowhiskers was 

synthesized

• In situ polymerization

• Solution blending with formic acid

• Mechanical properties of the composites

• Enhanced at low filler loading level (0.1–0.5 wt%)

• Tunable using CSW and proper preparation methods

• Different kind and/or degree of filler-matrix interactions was speculated.

• Further study on crystallinity and thermal behaviors of the composites are being conducted.

Result Highlights and Perspectives
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