About TAPPI Journal

An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews. TAPPI Journal is going Open Access. Read more.

Browse All Issues

  • Filter by date:
Editorial: Diverse content characterizes PaperCon 2019, TAPPI Journal November 2019

November 01, 2019

ABSTRACT: PaperCon 2019 was held from May 5-8 in Indianapolis, IN. Many of us visiting Indianapolis had little or no perception of the area beyond, of course, race cars and good sports teams. We also found a lovely, walkable downtown with a myriad of restaurants, parks, historic sites, and state government. As with the diverse offerings of PaperCon 2019’s host city of Indianapolis, the conference technical program was exceptionally broad this year. In this special issue of TAPPI Journal, we share both the breadth and quality of the content presented at PaperCon 2019 through peer-reviewed papers from the conference, as described below.

Multiple recycling of paperboard: Paperboard characteristics and maximum number of recycling cycles— Part I: Multiple recycling of corrugated base paper, TAPPI Journal November 2019

November 01, 2019

ABSTRACT: Paper for recycling is an important fiber source for the production of corrugated base paper. The change in production capacity toward more and more packaging papers affects the composition of paper for recy-cling and influences the paper quality. This research project investigated the influence of the multiple recycling of five different corrugated base papers (kraftliner, neutral sulfite semichemical [NSSC] fluting, corrugating medium, testliner 2, and testliner 3) on suspen-sion and strength properties under laboratory conditions. The corrugated board base papers were repulped in a low consistency pulper and processed into Rapid-Köthen laboratory sheets. The sheets were then recycled up to 15 times in the same process. In each cycle, the suspension and the paper properties were recorded. In particular, the focus was on corrugated board-specific parameters, such as short-span compression test, ring crush test, corrugat-ing medium test, and burst. The study results indicate how multiple recycling under laboratory conditions affects fiber and paper properties.

Rheological characterization of tack and viscoelasticity of compositions of crepe coating used in the Yankee dryer, TAPPI Journal November 2019

November 01, 2019

ABSTRACT: The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compo-sitions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.

A novel predictive method for filler coflocculation with cellulose microfibrils, TAPPI Journal November 2019

November 01, 2019

ABSTRACT: Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and benonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.

Lignin-based resins for kraft paper applications, TAPPI Journal November 2019

November 01, 2019

ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.

Creating adaptive predictions for packaging-critical quality parameters using advanced analytics and machine learning, TAPPI Journal November 2019

November 01, 2019

ABSTRACT: Packaging manufacturers are challenged to achieve consistent strength targets and maximize pro-duction while reducing costs through smarter fiber utilization, chemical optimization, energy reduction, and more. With innovative instrumentation readily accessible, mills are collecting vast amounts of data that provide them with ever increasing visibility into their processes. Turning this visibility into actionable insight is key to successfully exceeding customer expectations and reducing costs. Predictive analytics supported by machine learning can provide real-time quality measures that remain robust and accurate in the face of changing machine conditions. These adaptive quality “soft sensors” allow for more informed, on-the-fly process changes; fast change detection; and process control optimization without requiring periodic model tuning.The use of predictive modeling in the paper industry has increased in recent years; however, little attention has been given to packaging finished quality. The use of machine learning to maintain prediction relevancy under ever-changing machine conditions is novel. In this paper, we demonstrate the process of establishing real-time, adaptive quality predictions in an industry focused on reel-to-reel quality control, and we discuss the value created through the availability and use of real-time critical quality.