Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,341–1,350 of 1,354 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Open Access
Energy saving potential of interstage screen fractionation for production of board grade BCTMP, TAPPI Journal August 2023

ABSTRACT: Over the last few decades, the continuing decline in mechanical pulp-based grades has led pulp producers to modify operations and implement measures to reduce production costs in order to stay competitive. In spite of a considerable effort to reduce energy consumption, the latter is still a major portion of production costs in the process of making bleached chemithermomechanical pulp (BCTMP). In this study, we evaluated the impact of interstage screening fractionation (ISSF) and secondary refining strategy for producing BCTMP with the objective of reducing refining energy consumption while maintaining or improving bulk and strength properties. In the first step and to establish a baseline for a mill’s existing configuration, the collected primary refined pulp and reject streams from the ISSF were refined in a high consistency (HC) refiner to target freeness levels. The accepts and refined rejects streams were recombined, and their properties were compared to those of the refined primary pulp. The results showed that, at a given freeness of 400 mL and compared to the control case (without fractionation), the ISSF using an 0.070 in. basket followed by rejects refining could lead to about 25% energy saving in the second stage HC refining. Handsheet properties showed that utilization of ISSF could produce BCTMP with higher bulk and similar average fiber length and tear index. However, a slight reduction in tensile strength was observed. In the second set of trials, the primary refined pulp and the rejects from the ISSF using the 0.070 in. basket were refined by a low-consistency (LC) refiner. The results showed that, at the same freeness of 400 mL and compared to refined primary pulp, the ISSF saved about 26% in net LC refining energy. At a specific edge load (SEL) of 0.4 J/m, the produced pulp had similar bulk and strength properties compared to those of the control sample. A higher SEL of 0.6 J/m in LC refining could further decrease net refining energy consumption; however, it also led to reduction in fiber length, bulk, and strength properties.

Journal articles
Magazine articles
Open Access
The use of minerals in fiber-based packaging and pulp molding, TAPPI Journal January 2024

ABSTRACT: Minerals are widely used in the pulp and paper industry for aiding the processing, economics, and final quality of fiber-based products. Among these, calcium carbonate, talc, and kaolin are widely used as fillers, and these can have varying brightness, particle size distributions, and aspect ratios. For the molded fiber area, these minerals can raise the solids content of the pulp mixture and improve throughput and lower energy requirements for drying. Talc is also widely used as a process control agent, picking up pitch and stickies and improving productivity by lowering machine cleaning time.The replacement of single use plastic with fiber-based replacements is a global trend; however, it does come with some significant challenges, such as grease and moisture proofing. Previously, per- and polyfluoroalkyl substances (PFAS) have been used to provide functions such as water and grease repellency, but regulatory demands have seen its demise in the packaging industry. Therefore, water holdout is now generally achieved by addition of alkyl ketene dimer (AKD) sizing. Wax additives are being developed and tested as PFAS replacements for oil and grease resistance. Rather than strongly repelling lipids from the fiber surface, these PFAS alternatives restrict flow pathways and react with food oils to alter their flow characteristics to prevent penetration through the substrate. During studies incorporating both PFAS substitutes and minerals, no detrimental interactions were observed. This paper addresses the different needs of the molded fiber market by including mineral fillers in molded fiber articles and will be presented as a series of different case studies. In all studies, we show that the trends observed when mineral filler is added to molded fiber are broadly similar to those seen in conventional paper and paperboard applications. Mineral addition in all studies gave improvements in productivity and optical appearance. With its organophilic surface, hydrophobic talc had the additional advantage of pitch and sticky control, and although a small decrease in strength was always observed when filler was added, the final articles still retained sufficient strength for their particular application. This small strength reduction should be balanced against the productivity gains.

Journal articles
Magazine articles
Open Access
Experiments and visualization of sprays from beer can and turbo liquor nozzles, TAPPI Journal February 2022

ABSTRACT: Industrial scale swirl-type black liquor nozzles were studied using water as the test fluid. Simple water spraying experiments were found to be very beneficial for studying and comparing nozzles for black liquor spraying. These kinds of experiments are important for finding better nozzle designs. Three nozzle designs were investigated to understand the functional differences between these nozzles. The pressure loss of nozzle 1 (“tangential swirl”) and nozzle 3 (“turbo”) were 97% and 38% higher compared to nozzle 2 (“tan-gential swirl”). Spray opening angles were 75°, 60°, and 35° for nozzles 1, 2, and 3, respectively. Video imaging showed that the nozzles produced sprays that were inclined a few degrees from the nozzle centerline. Spray patter-nation showed all the sprays to be asymmetric, while nozzle 2 was the most symmetric. Laser-Doppler measure-ments showed large differences in spray velocities between nozzles. The spray velocity for nozzle 1 increased from 9 m/s to 15 m/s when the flow rate was increased from 1.5 L/s to 2.5 L/s. The resulting velocity increase for nozzle 2 was from 7 m/s to 11 m/s, and for nozzle 3, it was from 8 m/s to 13 m/s. Tangential flow (swirl) directed the spray 6°–12° away from the vertical plane. Liquid sheet breakup mechanisms and lengths were estimated by analyzing high speed video images. The liquid sheet breakup mechanism for nozzle 1 was estimated to be wave formation, and the sheet length was estimated to be about 10 cm. Sheet breakup mechanisms for nozzle 2 were wave formation and sheet perforation, and the sheet length was about 20 cm. Nozzle 3 was not supposed to form a liquid sheet. Nozzle geometry was found to greatly affect spray characteristics.

Journal articles
Magazine articles
Open Access
Rethinking the paper cup — beginning with extrusion process optimization for compostability and recyclability, TAPPI Journal June 2021

ABSTRACT: More than 50 billion disposable paper cups used for cold and hot beverages are sold within the United States each year. Most of the cups are coated with a thin layer of plastic — low density polyethylene (LDPE) — to prevent leaking and staining. While the paper in these cups is both recyclable and compostable, the LDPE coat-ing is neither. In recycling a paper cup, the paper is separated from the plastic lining. The paper is sent to be recycled and the plastic lining is typically sent to landfill. In an industrial composting environment, the paper and lining can be composted together if the lining is made from compostable materials. Coating paper cups with a compostable performance material uniquely allows for used cups to be processed by either recycling or composting, thus creating multiple pathways for these products to flow through a circular economy.A segment of the paper converting industry frequently uses an extrusion grade of polylactic acid (PLA) for zero-waste venues and for municipalities with ordinances for local composting and food service items. The results among these early adopters reveal process inefficiencies that elevate manufacturing costs while increasing scrap and generally lowering output when using PLA for extrusion coating. NatureWorks and Sung An Machinery (SAM) North America researched the extrusion coating process utilizing the incumbent polymer (LDPE) and PLA. The trademarked Ingeo 1102 is a new, compostable, and bio-based PLA grade that is specifically designed for the extrusion coating process. The research team identified the optimum process parameters for new, dedicated PLA extrusion coating lines. The team also identified changes to existing LDPE extrusion lines that processors can make today to improve output.The key finding is that LDPE and PLA are significantly different polymers and that processing them on the same equipment without modification of systems and/or setpoints can be the root cause of inefficiencies. These polymers each have unique processing requirements with inverse responses. Fine tuning existing systems may improve over-all output for the biopolymer without capital investment, and this study showed an increase in line speed of 130% by making these adjustments. However, the researchers found that highest productivity can be achieved by specifying new systems for PLA. A line speed increase to more than 180% and a reduction in coat weight to 8.6 µm (10.6 g/m2 or 6.5 lb/3000 ft2) was achieved in this study. These results show that Ingeo 1102 could be used as a paper coating beyond cups.

Journal articles
Magazine articles
Open Access
The influence of strain rate and pulp properties on the stre

The influence of strain rate and pulp properties on the stress relaxation of wet paper — modeling of relaxation, November 2016 TAPPI JOURNAL

Journal articles
Magazine articles
Open Access
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018

Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018

Journal articles
Magazine articles
Open Access
Web lateral instability caused by nonuniform paper properties, TAPPI Journal January 2022

ABSTRACT: Lateral or cross-machine direction (CD) web movement in printing or converting can cause problems such as misregistration, wrinkles, breaks, and folder issues. The role of paper properties in this problem was studied by measuring lateral web positions on commercial printing presses and on a pilot-scale roll testing facility (RTF). The findings clearly showed that CD profiles of machine direction (MD) tension were a key factor in web stability. Uneven tension profiles cause the web to move towards the low-tension side. Although extremely nonuniform tension profiles are visible as bagginess, more often, tension profiles must be detected by precision devices such as the RTF. Once detected, the profiles may be analyzed to determine the cause of web offset and weaving problems.Causes of tension profiles can originate from nonuniform paper properties. For example, by means of case studies, we show that an uneven moisture profile entering the dryer section can lead to a nonuniform tension profile and lateral web movement. Time-varying changes in basis weight or stiffness may also lead to oscillations in the web’s lateral position. These problems were corrected by identifying the root cause and making appropriate changes. In addition, we developed a mathematical model of lateral stability that explains the underlying mechanisms and can be used to understand and correct causes of lateral web instability.

Journal articles
Magazine articles
Open Access
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021

ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.

Journal articles
Magazine articles
Open Access
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022

ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: • The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. • Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. • Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.

Journal articles
Magazine articles
Open Access
Temperature profile measurement applications of moving webs and roll structures with intelligent roll embedded sensor technology

ABSTRACT: An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.