Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,641–1,650 of 1,782 results (Duration : 0.014 seconds)
Journal articles
Magazine articles
Open Access
A hundred years of corrosion in the pulp and paper industry, TAPPI JOURNAL May 2018

A hundred years of corrosion in the pulp and paper industry, TAPPI JOURNAL May 2018

Journal articles
Magazine articles
Open Access
Mill experience of calcium carbonate scale formation in green liquor pipelines, TAPPI Journal August 2020

ABSTRACT: Experience of hard calcite (CaCO3) scale formation in green liquor pipelines at four kraft pulp mills was systematically investigated to determine if there is any correlation between the severity of the scaling problem at each mill and the design and operating conditions of its causticizing plant. The results show that the high degree of supersaturation of calcium ions (Ca2+) in the liquor is the main contributing factor. Mills that operate at a lower green liquor total titratable alkali (TTA), higher causticity, and a larger liquor temperature drop are more likely to produce a green liquor that is supersaturated with Ca2+, and thus experience more severe scaling problems. In order to minimize CaCO3 scaling, the green liquor handling equipment should be operated as steady as possible to avoid conditions that allow Ca2+ to be supersaturated. The strategies include minimizing variations in liquor TTA, insulating the green liquor pipelines to reduce temperature gradients, and adding lime mud to weak wash to provide seeds for precipitation to occur on mud particles instead of on metal substrate.

Journal articles
Open Access
89JUN163

The influence of chlorine ratio and oxygen bleaching on the formation of PCDFs and PCDDs in pulp bleaching - Part 2: a full mill study, TAPPI JOURNAL June 1989

Journal articles
Magazine articles
Open Access
A true green cover for industrial waste landfills, TAPPI Journal April 2024

ABSTRACT: Greenhouse gas (GHG) emissions in the United States totaled 5,981 million metric tons of carbon dioxide equivalent (MMT CO2eq) in 2020. Of that, GHG emissions by the pulp and paper sector amounted to 35 MMT CO2eq direct emissions and those by industrial waste landfills summed to 7.4 MMT CO2eq direct emissions. Loss of GHG sinks due to change in land use further contributes to the net GHG emissions. Industrial waste landfills are typically required to comply with certain federal and state regulations, including meeting requirements for final cover systems. Conventional final cover systems have included use of soil covers and/or soil-geosynthetic composite covers. An engineered turf cover provides for an excellent “green” alternative final cover system for industrial waste landfills.This paper discusses various sustainability aspects pertaining to use of an engineered turf final cover, including: (i)significantly low carbon footprint associated with the construction of an engineered turf alternative final coverwhen compared to closure using a traditional or prescriptive cover system; (ii) saving valuable soil and land resourc-es; (iii) saving water resources by reduction in its use during and after construction; (iv) reducing impacts associated with borrow areas; and (v) reducing overall carbon footprint. Further, when using an engineered turf cover, opportunities exist for beneficial reuse of land, including development of solar energy. A brief discussion on the potential fordevelopment of solar energy is included.

Journal articles
Magazine articles
Open Access
Tetraethyl orthosilicate-containing dispersion coating — water vapor and liquid water barrier properties, TAPPI Journal September 2021

ABSTRACT: An aqueous styrene-butadiene latex dispersion coating containing in-situ processed tetraethyl orthosilicate (TEOS) applied on paperboard demonstrated improved water barrier performance. Coatings containing TEOS equivalent to 0.8% silicon dioxide (SiO2; dry basis) exhibited water vapor performance of < 25 g/m2/day (23°C, 50% relative humidity [RH]) and liquid water barrier performance Cobb 1800 s of < 6 g/m2, when applied as a single-layer 18 g/m2 coating. Cobb 1800 s barrier performance was still good (< 11 g/m2) at coat weights of 7•10 g/m2. The use of filler materials such as kaolin improved the vapor barrier properties of the coating, but this was not critical to the liquid water barrier properties.

Journal articles
Magazine articles
Open Access
Lignin value prior to pulping (LVPP): An advanced pulping c

Lignin value prior to pulping (LVPP): An advanced pulping concept, TAPPI JOURNAL October 2017

Journal articles
Magazine articles
Open Access
Degradation of 2,4-dichlorophenol by melamine amine cellulos

Degradation of 2,4-dichlorophenol by melamine amine cellulose- immobilized lacasses, TAPPI JOURNAL October 2017

Journal articles
Magazine articles
Open Access
Editorial: TAPPI Journal 2019 Best Research Paper addresses hard scale formation in green liquor pipelines, TAPPI Journal March 2020

ABSTRACT: TAPPI and the TAPPI Journal (TJ) Editorial Board would like congratulate the authors of the 2019 TAPPI Journal Best Research Paper Award: Alisha Giglio, Vladimiros Papangelakis, and Honghi Tran. Their paper, “The solubility of calcium carbonate in green liquor handling systems,” appeared on p. 595 of the October 2019 issue. This kraft recovery cycle research was recognized by the TJ Editorial Board for its innovation, creativity, scientific merit, and clear expression of ideas.

Journal articles
Magazine articles
Open Access
Alternative “green” lime kiln fuels: Part I—Pulping/recovery byproducts, TAPPI Journal May 2020

ABSTRACT: This paper is the first of a two-part series on “green” lime kiln fuels. The first part of this work reviews the use of pulp mill and recovery byproducts as either full or partial replacement of oil or natural gas in the kiln. The second part reviews the use of various forms of woody biomass, bio-oils, gasification, and hydrogen as potential carbon neutral or carbon-free lime kiln fuels.

Journal articles
Magazine articles
Open Access
Multifunctional starch-based barrier materials, TAPPI Journal August 2021

ABSTRACT: Natural and renewable polymer-based barrier materials play an inevitable role in a sustainable economy. Most commercially available barrier materials are either based on multiple layers of synthetic polymers or petroleum-based chemicals. Tremendous amounts of research are being done in academia and industry to replace these synthetic barrier materials with natural and environmentally friendly materials. The current work summarizes the application of starch-based materials for various barrier applications, such as water vapor, oxygen, liquid water, oil, and grease. Also, exotic starch-based barrier materials for the application of sound, ultraviolet, and thermal barrier applications are reviewed. The potential of starch-based materials to offer antimicrobial and antiviral properties is discussed. Finally, commercially available starch-based barrier materials have been summarized.