Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,811–1,820 of 1,866 results (Duration : 0.016 seconds)
Journal articles
Magazine articles
Open Access
Black liquor evaporators upgrade — How many effects?, TAPPI Journal April 2023

ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. When considering an evaporator rebuild or a new system, the key design question is how many effects to include in the system. The number of effects is the main design feature that deter-mines the economy of the system and the steam usage for a given evaporation capacity. A higher number of effects increases steam economy and reduces energy cost to a point, but additional effects also have higher initial capital cost and increased power costs. This research paper uses life-cycle cost analysis (LCCA) as a method to determine the optimum number of evaporator effects for a new evaporator system. The same basic principles and method can also apply to existing evaporator rebuild projects.

Journal articles
Magazine articles
Open Access
Using novel DNA methods to achieve higher process efficiency and performance, TAPPI Journal January 2023

ABSTRACT: Uncontrolled microbiological activity is a challenge for recycled fiber (RCF) mills as it can have negative effects on production and end-product quality. The microbes that exist in these systems have been largely unknown, and the strategies employed to control microbiology have been non-specific. Understanding the specific microbial groups present in RCF mills, their properties, and where they exist, as well as having the ability to accurately measure the true troublemakers, are key to targeted control of the bad actors. In this study, we present the results of a global survey of over 40 RCF paper machines. The same RCF-specific problem-causing bacterial groups were found on different continents, including large densities of newly identified bacteria in paper processes. Those can degrade cellulose and starch, produce acids and odorous substances, and have a significant impact on fiber strength and additive consumption. We also demonstrate how modern DNA tools can quantify the impact of biocidal countermeasures against the actual troublemakers, including bacteria found to degrade cellulose during RCF pulp storage, which may be linked to a negative impact on end-product strength. These novel DNA tools give producers updated biocide program key performance indicators (KPIs) and actionable information to more effectively design and adjust microbiological control to achieve higher process efficiency and performance.

Journal articles
Magazine articles
Open Access
The role of hornification in the deterioration mechanism of physical properties of unrefined eucalyptus fibers during paper recycling, TAPPI Journal February 2024

ABSTRACT: Physical properties of cellulosic paper deteriorate significantly during paper recycling, which hinders the sustainable development of the paper industry. This work investigates the property deterioration mechanism and the role of hornification in the recycling process of unrefined eucalyptus fibers. The results showed that during the recycling process, the hornification gradually deepened, the fiber width gradually decreased, and the physical properties of the paper also gradually decreased. After five cycles of reuse, the relative bonding area decreased by 17.6%, while the relative bonding force decreased by 1.8%. Further results indicated that the physical property deterioration of the paper was closely related to the decrease of fiber bonding area. The fiber bonding area decreased linearly with the reduction of re-swollen fiber width during paper recycling. Re-swollen fiber width was closely related to the hornification. Hornification mainly reduces the bonding area of unrefined eucalyptus fiber rather than the bonding force. The work elucidates the role of hornification in the recycling process of unrefined eucalyptus fibers and the deterioration mechanism of paper physical properties, which will be helpful to control the property deterioration of paper and achieve a longer life cycle.

Journal articles
Magazine articles
Open Access
Creasing severity and reverse-side cracking, TAPPI Journal April 2020

ABSTRACT: Crease cracking can be detrimental to the functionality and appearance of paperboard-based packaging. The effect of creasing severity on the degree of reverse-side crease cracking (bead-side of the crease) of paperboard was investigated. Samples were creased with a range of rule and channel geometries, and the cracking degree was quantified as the percent of cracked length relative to the total length of the crease. The cracking degree was typically below 5% at low crease penetration depths, but was exponentially higher beyond a critical penetration depth. A rule and channel combination with a wider clearance shifted the critical depth to larger values. The creasing severity parameter, termed the creasing draw, converged the cracking degree data from different rule and channel combinations to a single curve. The creasing draw was derived from the same analytical expres-sions as the transverse shear strain and quantifies the length of paper that is drawn into the channel during creasing. The critical draw is defined as the draw at which cracking becomes greater than 5%, which corresponds with the point at which cracking becomes exponential. The critical draw is a material/system parameter that defines the level below which cracking is minimal.

Journal articles
Magazine articles
Open Access
Stiffness and strength properties of five paperboards and their moisture dependency, TAPPI Journal February 2020

ABSTRACT: Five commercial multiply folding boxboards made on the same paperboard machine have been analyzed. The paperboards were from the same product series but had different grammage (235, 255, 270, 315, 340 g/m2) and different bending stiffness. The paperboards are normally used to make packages, and because the bending stiffness and grammage varies, the performance of the packages will differ. Finite element simulations can be used to predict these differences, but for this to occur, the stiffness and strength properties need to be deter-mined. For efficient determination of the three-dimensional properties in the machine direction (MD), cross direction (CD), and Z direction (ZD), it is proposed that the paperboard should be characterized using in-plane tension, ZD-tension, shear strength profiles, and two-point bending. The proposed setups have been used to determine stiff-ness and strength properties at different relative humidity (20,% 50%, 70%, and 90% RH), and the mechanical proper-ties have been evaluated as a function of moisture ratio.There was a linear relation between mechanical properties and moisture ratio for each paperboard. When the data was normalized with respect to the standard climate (50% RH) and plotted as a function of moisture ratio, it was shown that the normalized mechanical properties for all paperboards coincided along one single line and could therefore be expressed as a linear function of moisture ratio and two constants.Consequently, it is possible to obtain the mechanical properties of a paperboard by knowing the structural properties for the preferred level of RH and the mechanical property for the standard climate (50% RH and 23°C).

Journal articles
Magazine articles
Open Access
Numerical investigation of the effect of ultrasound on paper drying, TAPPI Journal March 2022

ABSTRACT: The paper drying process is very energy inefficient. More than two-thirds of the total energy used in a paper machine is for drying paper. Novel drying technologies, such as ultrasound (US) drying, can be assessed numerically for developing next-generation drying technologies for the paper industry. This work numerically illustrates the impact on drying process energy efficiency of US transducers installed on a two-tiered dryer section of a paper machine. Piezoelectric transducers generate ultrasound waves, and liquid water mist can be ejected from the porous media. The drying rate of handsheet paper in the presence of direct-contact US is measured experimentally, and the resultant correlation is included in the theoretical model. The drying section of a paper machine is simulated by a theoretical drying model. In the model, three scenarios are considered. In the first scenario, the US modules are positioned in the dryer pockets, while in the second scenario, they are placed upstream of the drying section right after the press section. The third case is the combination of the first and second scenarios. The average moisture content and temperature during drying, enhancement of total mass flux leaving the paper by the US mechanism, total energy consumption, and thermal effect of heated US transducers are analyzed for all cases. Results show that the application of the US can decrease the total number of dryer drums for drying paper. This numerical study is based on the US correlation obtained with the US transducer direct-contact with the paper sample. Thus, future work should include US correlation based on a non-contact US transducer.

Journal articles
Magazine articles
Open Access
Furnishing autohydrolyzed poplar weakly alkaline P-RC APMP to make lightweight coated base paper, TAPPI Journal February 2022

ABSTRACT: This work investigated the effects of autohydrolysis pretreatment severity on poplar (Populus tomentosa Carr.) woodchips used to make a type of high-yield pulp (HYP) known as preconditioning followed by refiner chemical treatment, alkaline peroxide mechanical pulp (P-RC APMP). It also investigated the ratios for partially replacing sodium hydroxide (NaOH) with magnesium oxide (MgO) in the high-consistency (HC) retention stage of the P-RC APMP process on the obtained HYP’s properties. The results show that the pretreatment severity of autohydrolysis at combined hydrolysis factor (CHF) = 10.77 and the 50 wt% ratio for partially substituting NaOH with MgO were the optimum conditions for making light-weight coated (LWC) base paper. Compared to the conventional P-RC APMP, the optimized P-RC APMP had similar bulk and higher tensile, burst, and tear indices, as well as opacity, but a slightly lower ISO brightness. When the optimized P-RC APMP and commercial softwood bleached sulfate pulp (SBKP) were blended to make LWC base paper, the most favorable pulp furnish was comprised of 50% optimized P-RC APMP and 50% commercial SBKP. The obtained LWC base paper handsheet had better bulk, and its other properties could also meet the require-ments of LWC base paper.

Journal articles
Magazine articles
Open Access
Amphoteric dry strength chemistry approach to deal with low-quality fiber and difficult wet-end chemistry conditions in the Asian and North American markets, TAPPI Journal January 2024

ABSTRACT: With Japan’s high recycling rates and low access to fresh fiber sources, reaching strength targets in manufacturing packaging materials is a challenge. Declining quality of recycled fiber and minimal freshwater con-sumption results in difficult wet-end chemistry conditions in terms of high conductivity and elevated levels of dissolved and colloidal substances (DCS). These trends are somewhat typical of other Asian regions. Due to global trade, Asian packaging materials have become a part of the North American (NA) raw material pool. The gradual closing of mill water circuits for fresh water and energy savings results in more difficult wet-end chemistry conditions experienced in North America. China’s ban on the import of mixed paper and the consequent ban on all waste-paper imports triggered a significant price drop in recycled raw material, resulting in plans for increased manufacturing capacity in North America. Between increased demand, decreasing fiber quality, and movement towards more closed white water systems associated with packaging grade paperboard (even a virgin fiber mill uses a fair amount of recycled fiber), new methods to overcome strength reduction in raw materials must be proactively considered for North America. Reviewing the strategies currently used in the Asian industry regarding strength development is an excellent starting place for NA producers. A clear difference between Asian and NA wet-end chemistry is the dominant position of amphoteric dry strength agents. This paper reviews the fundamentals of dry strength development that explain the trend towards the increased application of amphoteric dry strength technology for poor-quality fiber and highly contaminated water circuits in Asian markets. This paper discusses the development and application perfor-mance of the novel 4th generation amphoteric polyacrylamide (AmPAM) dry strength technology, based on selected laboratory and mill case studies.

Journal articles
Magazine articles
Open Access
Effects of tissue additives on copy paper forming and properties, TAPPI Journal February 2024

ABSTRACT: Laboratory tests were conducted in an effort to determine the effects on paper machine process attributes and the properties of paper made from recycled copy paper furnish upon the addition of chemical agents that are commonly used in the production of hygiene tissue products. Due to continuing growth in tissue and towel grades of paper, such agents are experiencing greater usage. Charge titration test results revealed that certain dry strength agents associated with tissue manufacturing have the potential to shift the balance of charge in papermaking furnish to less negative or even positive values. Creping adhesive was found to contribute to fine particle retention, especially when present at relatively high levels. Release aid and a polyacrylate dispersant had the opposite effect. Low addition levels of both a creping adhesive and a debonding agent surprisingly increased a wide range of strength attributes of paper handsheets in comparison to sheets prepared from unaltered recycled copy paper furnish. The debonding agent decreased paper strength at higher levels of addition. Such effects appear to depend not only on the expected effects of agents themselves, but also on how they affect the charge balance of the wet-end system.

Journal articles
Magazine articles
Open Access
Viscoelastic web curl due to storage in wound rolls, TAPPI Journal July 2020

ABSTRACT: Winding is often the final operation in a roll-to-roll manufacturing process. Web materials, i.e., materials that are thin compared to their length, are wound into rolls because this form is the only practical means to store them. The resulting bending strains and associated stresses are large for thick webs and laminates. As many webs are viscoelastic on some time scale, bending stresses lead to creep and inhomogeneous changes in length. When the web material is unwound and cut into discrete samples, a residual curvature remains. This curvature, called curl, is the inability for the web to lie flat at no tension. Curl is an undesirable web defect that causes loss of productivity in a subsequent web process. This paper describes the development and implementation of modeling and experimental tools to explore and mitigate curl in homogenous webs. Two theoretical and numerical methods that allow the prediction of curl in a web are developed: a winding software based on bending recovery theory, and the implementation of dynamic simula-tions of winding. One experimental method is developed that directly measures the curl online by taking advantage of the anticlastic bending resulting from the curl. These methods are demonstrated for a low-density polyethylene web.