Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Event Type
Collections
Pulp and paper mills: The original biorefineries — past performance and limitations to future opportunities, TAPPI Journal October 2023
ABSTRACT: Pulp mills have been biorefineries since the invention of the Tomlinson recovery boiler. Unfortunately, the paper industry has done a poor job explaining that concept to the general public. A number of bioproducts in everyday use have been produced by pulp mills for several decades, and new products are routinely being developed. Modern research efforts over the last couple of decades have focused on producing even more products from pulp and paper mills through capacity enhancement and the development of value-added products and liquid transportation fuels to enhance paper mill profitability. Some of these efforts, often referred to as modern biorefineries, have focused so heavily on product development that they have ignored operating and process realities that limit the transformation of pulp and paper mills from the current limited number of bioproducts produced today to economic scale production of these value-added products. In this paper, several of these limitations are addressed. In addition, there are several supply chain, marketing, product quality, and economic realities limiting the value potential for these wholesale conversions of pulp mills into multiproduct modern biorefineries. Finally, the conservative nature and capital intensity of the pulp and paper industries provide a difficult hurdle for conversion to the modern biorefinery concept. These issues are also reviewed.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) — Fibrous substrates, TAPPI Journal September 2023
ABSTRACT: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been implemented during the finishing process of textiles such as upholstery, clothing, personal protective equipment, and sports gear to provide water resistance. Currently, PFAS are still present at quantifiable levels in consumer products and food, even though many companies have started to phase out PFAS treatment with non-toxic water repellant replacements given the possible detrimental health effects suggested by current research. This paper is a detailed review that focuses on how PFAS are implemented in textile production and sources of PFAS contamination during chemical treatments. This review also addresses current legislation on PFAS emissions and trade regulations to decrease exposure of consumers due to toxicokinetics and mechanisms of action through-out the body that are still not well understood. This paper includes a literature review on possible PFAS related health conditions shown from past research and contains suggested toxicity levels, exposure routes, duration, and pathways detailed to the best of our ability.
A discrete element method to model coating layer mechanical properties with bimodal and pseudo-full particle size distributions, TAPPI Journal July 2023
ABSTRACT: The mechanical properties of paper coating layers are important in converting operations such as calendering, printing, and folding. While several experimental and theoretical studies have advanced our knowledge of these systems, a particle level understanding of issues like crack-at-the-fold are lacking.A discrete element method (DEM) model is used to describe bending and tension deformations of a coating layer. The particles in the model are either bimodal distributions or pseudo-full particle size distributions of spherical particles. The impact of particle size distribution on the predicted mechanical properties of the coating layer is reported. Inputs to the model include properties of the binder film and the binder concentration. The model predicts crack formation as a function of these parameters and also calculates the modulus, the maximum stress, and the strain-to-failure. The simulation results are compared to previous experimental results. Reasonable predictions were obtained for both tensile and bending for a range of latex-starch ratios and at various binder concentrations. The influence of particle packing density on mechanical properties is reported.
Effectiveness of masks in the suppression of COVID-19 cases during the ongoing pandemic in India, TAPPI Journal October 2022
ABSTRACT: Perhaps the worst predicament faced by humanity in the twenty-first century is the COVID-19 pandemic, which is caused by the SARS-CoV-2 virus. Most parts of the world, including India, went into lockdowns for some period because of the massive increase in cases throughout 2020. Face masks became an important counter-measure for protecting the populace, health professionals, and medics, particularly during the period prior to the mass availability of vaccines. This study intends to evaluate the effectiveness of face masks in limiting the spread of the virus. The data for the number of COVID-19 cases was analyzed from January 1, 2022 to May 31, 2022, using Python programming. This timeframe involved face mask mandates and no mask requirement, and hence was considered to be ideal for analyzing the usefulness of face masks. A decline in cases during the mandate was observed, while the opposite occurred without the mandate. The outcome of the research showed that face masks are effective additional measures against the spread of SARS-CoV-2. This study elevates the value of personal protective equipment (PPE), such as face masks, made with nonwovens and other fabrics, as lifesavers in the case of airborne diseases such as COVID-19 and other pulmonary disorders.
Journal articles
Magazine articles
Microbial load and proliferation associated with various face mask types and sources during the COVID-19 pandemic, TAPPI Journal January 2022
ABSTRACT: Due to the shortage of personal protective equipment during the COVID-19 pandemic, homemade face coverings were recommended as alternatives. However, the capability of alternative face coverings to proliferate microbes have not been fully documented. The current study evaluated bacterial load and proliferation associated with the use of common face masks during the COVID-19 pandemic. Mask type-specific and surface-related bacterial load and pattern were noticeable in the study. Results indicated that roadside masks are among samples that contained relatively higher initial bacterial load. The highest number of bacterial forming colonies were observed in the inner surface of mask samples. Proliferation of microbes over time was also noticeable among the non-certified face coverings included in the study. Sterilization or washing of non-certified fabric face masks before use is recommended.
Journal articles
Magazine articles
Rethinking the paper cup — beginning with extrusion process optimizationfor compostability and recyc
ABSTRACT: More than 50 billion disposable paper cups used for cold and hot beverages are sold within the United States each year. Most of the cups are coated with a thin layer of plastic — low density polyethylene (LDPE) — to prevent leaking and staining. While the paper in these cups is both recyclable and compostable, the LDPE coat-ing is neither. In recycling a paper cup, the paper is separated from the plastic lining. The paper is sent to be recycled and the plastic lining is typically sent to landfill. In an industrial composting environment, the paper and lining can be composted together if the lining is made from compostable materials. Coating paper cups with a compostable performance material uniquely allows for used cups to be processed by either recycling or composting, thus creating multiple pathways for these products to flow through a circular economy.A segment of the paper converting industry frequently uses an extrusion grade of polylactic acid (PLA) for zero-waste venues and for municipalities with ordinances for local composting and food service items. The results among these early adopters reveal process inefficiencies that elevate manufacturing costs while increasing scrap and generally lowering output when using PLA for extrusion coating. NatureWorks and Sung An Machinery (SAM) North America researched the extrusion coating process utilizing the incumbent polymer (LDPE) and PLA. The trademarked Ingeo 1102 is a new, compostable, and bio-based PLA grade that is specifically designed for the extrusion coating process. The research team identified the optimum process parameters for new, dedicated PLA extrusion coating lines. The team also identified changes to existing LDPE extrusion lines that processors can make today to improve output.The key finding is that LDPE and PLA are significantly different polymers and that processing them on the same equipment without modification of systems and/or setpoints can be the root cause of inefficiencies. These polymers each have unique processing requirements with inverse responses. Fine tuning existing systems may improve over-all output for the biopolymer without capital investment, and this study showed an increase in line speed of 130% by making these adjustments. However, the researchers found that highest productivity can be achieved by specifying new systems for PLA. A line speed increase to more than 180% and a reduction in coat weight to 8.6 µm (10.6 g/m2 or 6.5 lb/3000 ft2) was achieved in this study. These results show that Ingeo 1102 could be used as a paper coating beyond cups.
Experimental Study of Dioxin Formation and Emissions from Power Boilers Burning Salt-Laden Wood Waste, 2008 Engineering, Pulping and Environmental Conference
Experimental Study of Dioxin Formation and Emissions from Power Boilers Burning Salt-Laden Wood Waste, 2008 Engineering, Pulping and Environmental Conference