Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 181–190 of 217 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Using bleaching stage models for benchmarking hardwood ECF bleach plants, TAPPI Journal October 2023

ABSTRACT: Steady-state models estimated the performance of the D0(EOP)D1 bleach sequence at two mixed hardwood bleach plants in the southern United States. At Mill 1, the full sequence’s chlorine dioxide charge that brightens the pulp to ~84% ISO was monitored for two weeks. Mill 2 considered the partial sequence that brightens the pulp to ~86% ISO for nearly four weeks. Elevated levels of chlorine dioxide were linked to increased washer carryover in brownstock and extraction areas. For Mills 1 and 2, an extra 0.24% and 0.33% chlorine dioxide was consumed in the D0 stage. This extra bleach demand was equivalent to an additional 4.8 and 5.5 kappa load to the brownstock, respectively. Some differences were observed for the D1 stage. Mill 1 had extraction carryover that averaged 1.1 units higher than was measured, contributing to use of an extra 0.22% of chlorine dioxide. Mill 2 had extraction carryover that averaged between 0 and 0.7 kappa units and consumed up to 0.13% more chlorine dioxide. Another data set from Mill 2 showed high brownstock and extraction carryover, leading to ~0.90% more total chlorine dioxide usage to brighten to 84% ISO. Overall, this investigation illustrated that the models could be employed as benchmarks.

Journal articles
Magazine articles
Open Access
Factors affecting phosphorus uptake/dissolution during slaking and causticizing, TAPPI Journal March 2024

ABSTRACT: Hydroxide is regenerated in the recovery cycle of kraft pulp mills by the addition of lime (CaO) to green liquor. Phosphate in green liquor can react with the lime during slaking/causticizing. Total titratable alkali (TTA), sulfidity, the concentration of phosphate in the green liquor, temperature, and the liming ratio were all variables explored in this work to determine their influence on phosphorus uptake and dissolution. Experiments were also run in which the lime was slaked before being added to the green liquor to separate reactions with phosphate during slaking and reactions that occur during causticizing. Both reburnt lime and technical grade CaO were used. The experiment results indicate that phosphorus primarily reacts with slaked lime (Ca(OH)2), and that the final concentration of phosphate in the white liquor at the end of slaking and causticizing is nearly independent of the initial concentration of phosphorus and only mildly dependent on the carbonate concentration in the green liquor. There do appear to be differences in the rate at which phosphate reacts with reburnt lime and technical grade CaO, though the reason for this was not determined.

Journal articles
Magazine articles
Open Access
Techno-economic analysis of hydrothermal carbonization of pulp mill biosludge, TAPPI Journal March 2023

ABSTRACT: For many mills, the biosludge from wastewater treatment is difficult to recycle or dispose of. This makes it a challenging side stream and an important issue for chemical pulping. It often ends up being burned in the recovery or biomass boiler, although the moisture and non-process element (NPE) contents make it a problematic fuel. Biosludge has proven resistant to attempts to reduce its moisture. When incinerated in the biomass boiler, the heat from dry matter combustion is often insufficient to yield positive net heat. Mixing the sludge with black liquor in the evaporator plant for incineration in the recovery boiler is more energy efficient, but is still an additional load on the evaporator plant, as well as introducing NPEs to the liquor. In this study, treating the biosludge by hydrother-mal carbonization (HTC), a mild thermochemical conversion technology, is investigated. The HTC process has some notable advantages for biosludge treatment; taking place in water, it is well suited for sludge, and the hydrochar product is much easier to dewater than untreated sludge. In this study, two HTC plant designs are simulated using IPSEpro process simulation software, followed by economic analysis. Low temperature levels are used to minimize investment costs and steam consumption. The results show that if the sludge is incinerated in a biomass boiler, payback periods could be short at likely electricity prices. The HTC treatment before mixing the sludge with black liquor in the evaporator plant is profitable only if the freed evaporator capacity can be used to increase the firing liquor dry solids content.

Journal articles
Magazine articles
Open Access
Using bleaching stage models for benchmarking softwood ECF bleach plants, TAPPI Journal July 2022

ABSTRACT: Steady-state bleaching delignification and brightening models were used to gauge how well elemental chlorine-free (ECF) bleach plants were using chlorine dioxide to bleach 25-kappa softwood brownstocks. Case 1 examined the D0(EOP)D1 portion of Mill 1’s five-stage sequence that brightens the pulp to 86% ISO. Case 2 studied the D0(EO)D1 portion of Mill 2’s four-stage sequence, which brightens the pulp to 82% ISO, and Case 3 re-examined the same bleach plant several years after it made improvements around the extraction stage. The models highlighted days in the previously mentioned cases where high bleach usage occurred, presumably because of high brownstock and/or extraction washer carryover, and days where bleach usage was normal. In Case 2, the model esti-mated that 10 kg of the 44 kg chlorine dioxide/metric ton pulp consumed in bleaching was likely reacting with washer carryover sources; approximately two-thirds of this extra consumption was assumed to be reacting with extraction filtrate. Changes that Mill 2 made (Case 3) reduced the unproductive chlorine dioxide usage from 10 to 5 kg/metric ton pulp. When the delignification and brightening models were simultaneously solved, the models predicted somewhat different optimized distributions of chlorine dioxide to D0 and D1 vs. actual values used in bleach plants. However, the forecasted chlorine dioxide totals agreed with the actual values when washer carryover sources were considered. This study showed the bleaching models could be used as hypothetical benchmarks for softwood ECF bleach plants.

Journal articles
Magazine articles
Open Access
Understanding the pulping and bleaching performances of eucalyptus woods affected by physiological disturbance, TAPPI Journal November 2018

Understanding the pulping and bleaching performances of eucalyptus woods affected by physiological disturbance, TAPPI Journal November 2018

Journal articles
Magazine articles
Open Access
Crossflow filtration of green liquor for increased pulp production, improved green liquor quality, and energy savings, TAPPI JOURNAL October 2020

ABSTRACT: A new green liquor filtration system has been installed and commissioned at the Ence pulp mill in Pontevedra, Spain. The filtration system is based on microfiltration and was developed in collaboration with the KTH Royal Institute of Technology in Stockholm, Sweden. The patented method for efficient purification of green liquor decreases the non-process element (NPE) content by providing more efficient solids/liquid separation, reducing energy and chemical consumption in pulp mills and increasing production capacity by eliminating certain capacity bottlenecks. The process has been continuously tested at the Aspa Bruk Mill outside Askersund, Sweden, since 2013. The technology has proven to create nearly particulate-free green liquor during the purification process. The technology can also be used to polish white liquor to provide higher pulp quality.To provide for a simple and cost-effective installation, the system was designed as a skid-mounted unit that is pre-piped, instrumented, and tested before shipment. The system is modular and allows for easy expansion of capacity. This paper discusses the process design, process integration, and startup of the new system, along with experiences from the first months of operation.

Journal articles
Magazine articles
Open Access
The role of hornification in the deterioration mechanism of physical properties of unrefined eucalyptus fibers during paper recycling, TAPPI Journal February 2024

ABSTRACT: Physical properties of cellulosic paper deteriorate significantly during paper recycling, which hinders the sustainable development of the paper industry. This work investigates the property deterioration mechanism and the role of hornification in the recycling process of unrefined eucalyptus fibers. The results showed that during the recycling process, the hornification gradually deepened, the fiber width gradually decreased, and the physical properties of the paper also gradually decreased. After five cycles of reuse, the relative bonding area decreased by 17.6%, while the relative bonding force decreased by 1.8%. Further results indicated that the physical property deterioration of the paper was closely related to the decrease of fiber bonding area. The fiber bonding area decreased linearly with the reduction of re-swollen fiber width during paper recycling. Re-swollen fiber width was closely related to the hornification. Hornification mainly reduces the bonding area of unrefined eucalyptus fiber rather than the bonding force. The work elucidates the role of hornification in the recycling process of unrefined eucalyptus fibers and the deterioration mechanism of paper physical properties, which will be helpful to control the property deterioration of paper and achieve a longer life cycle.

Journal articles
Magazine articles
Open Access
Non-process elements in the recovery cycle of six Finnish kraft pulp mills, TAPPI Journal March 2023

ABSTRACT: In this work, the aim was to study the distribution and accumulation of the non-process elements (NPEs) in the recovery cycle of Finnish pulp mills and look at whether the geographical location (North vs. South) correlates with the current Finnish NPE levels. In addition, a comparison to older similar Finnish measurements was made with an attempt to analyze the reasons behind differences in the most typical non-process elements, aluminum (Al), silicon (Si), calcium (Ca), phosphorus (P), magnesium (Mg), manganese (Mn), chlorine (Cl), and potassium (K), taking into account the main elements in the white liquor, sodium (Na) and sulfur (S). The extensive laboratory results gained in this study are from seven sampling points at six pulp mills and present analytical data of metal concentrations. The data obtained presents an update to previous NPE studies. The levels found did not statistically differ between North and South Finland. The NPE levels, apart from phosphorus, found in Finnish pulp mills today have not changed considerably compared to the levels in earlier investigations in the 1990s. In the newest data, the phosphorus concentration was consistently higher in the as fired black liquor, electrostatic precipitator (ESP) ash, lime mud, and green liquor than in the previous results. In addition, the levels of Al, Si, Ca, P, and Mg in recovery boiler ESP ash were consistently higher compared to the older results. As the mills start to close their systems more, a stronger accumulation of NPEs can be expected, increasing the likelihood of more operational problems in the process. Further understanding of where the NPEs accumulate and how they can be most effectively removed will be valuable knowledge in the future.

Journal articles
Magazine articles
Open Access
Impact and feasibility of a membrane pre-concentration step in kraft recovery, TAPPI Journal May 2021

ABSTRACT: Emerging robust membrane systems can perform the first section of black liquor (BL) concentration by separating clean water from the black liquor stream using only mechanical pressure. By doing so, they can reduce the steam and energy required for BL concentration. Because of the high osmotic pressure of strong BL, a membrane system would not replace evaporators but would operate in series, performing the first section of BL concentration. In this work, we use a multi-effect evaporator (MEE) model to quantify the steam and energy savings associated with installing membrane systems of different sizes. When maintaining a constant BL solids throughput, we find that a pulp mill could reduce steam usage in its evaporators by up to 65%. Alternatively, a membrane system could also serve to increase BL throughput of the recovery train. We find that a membrane system capable of concentrating BL to 25% could double the BL solids throughput of a mill’s evaporators at the same steam usage. We also demonstrate that installing a membrane system before an MEE would minimally affect key operating parameters such as steam pressures and BL solids concentrations in each effect. This indicates that installing a membrane pre-concentration system would be nonintrusive to a mill’s operations.

Journal articles
Magazine articles
Open Access
Corrosion damage and in-service inspection of retractable sootblower lances in recovery boilers, TAPPI Journal October 2021

ABSTRACT: Several reports of accidents involving serious mechanical failures of sootblower lances in chemical recovery boilers are known in the pulp and paper industry. These accidents mainly consisted of detachment and ejection of the lance tip, or even of the entire lance, to the inside of the furnace, towards the opposite wall. At least one of these cases known to the author resulted in a smelt-water explosion in the boiler.In other events, appreciable damage or near-miss conditions have already been experienced. The risk of catastrophic consequences of the eventual detachment of the lance tip or the complete lance of a recovery boiler soot-blower has caught the attention of manufacturers, who have adjusted their quality procedures, but this risk also needs to be carefully considered by the technical staff at pulp mills and in industry committees.This paper briefly describes the failure mechanisms that prevailed in past accidents, while recommending inspection and quality control policies to be applied in order to prevent further occurrences of these dangerous and costly component failures. Digital radiography, in conjunction with other well known inspection techniques, appears to be an effective means to ensure the integrity of sootblower lances in chemical recovery boilers used in the pulp and paper industry.