Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 2,931–2,940 of 3,438 results (Duration : 0.027 seconds)

Filters

Industry

Topics

Content Type

Publications

Level of Knowledge

Committees

Event Type

Collections

Events
Did You Forget to Register for TAPPI Nano 2022?

Head to Helsinki, Finland for the peer-reviewed technical program and unique networking opportunities

Open Access
Water chemistry challenges in pulping and papermaking – fundamentals and practical insights: Part 1: Water chemistry fundamentals and pH, TAPPI Journal June 2022

ABSTRACT: Water is an essential component of the papermaking process. Nevertheless, papermakers often overlook its importance compared to fibers and chemical additives. A better understanding of water properties and chemical interactions associated with water at the wet end leads to a sound foundation for high-quality paper production and smooth operation. Not all fresh water and process water is the same. Fresh water varies from mill to mill, primarily due to the location and availability of water sources. Some industrial trends, such as enhancing water conservation and production yield, gradually shift process water quality over time. The current work serves as a primer on water and water chemistry fundamentals to help the papermaker prepare for the future challenges of increased contamination of process water associated with reduced fresh water usage. This paper focuses on basic water chemistry definitions and discusses the impact of pH on wet-end operation. It is clear that pH is a fundamental factor that directly affects the process and impacts other factors relevant to the papermaking process. It is crucial to understand what pH represents, how it is measured, how to select the proper pH and carefully control it, and how to closely maintain the process at target setpoints. Understanding the sensitivity of operation to pH change will lead to an appropriate focus on these issues. In addition to basic theory, we also review onsite experience and practical mill cases. It is imperative to stress that, although critical, pH is not the only chemical parameter impacting papermaking operations. Other factors, such as ionic concentration measured by conductivity, surface, soluble charge, and hardness, are critical and will be discussed in Part II of this series. As pH is a primary and independent factor that impacts various forms of charge and conductivity, the authors decided to start the current series of papers by discussing pH.

Open Access
Experimental study and prediction of two-phase flow pattern distribution diagrams in multi-channel cylinder dryer, TAPPI Journal July 2023

ABSTRACT: The multi-channel cylinder dryer (MCD) is designed to improve heat transfer. Although there are numerous research studies on the pressure drop, heat transfer characteristics, and flow pattern in static state of MCD, there is little research on the flow pattern in the rotating state. In this paper, the distribution of flow pattern in MCD under different rotating speeds and steam mass flow rates is studied. Furthermore, the logistic regression method (LR) is used to predict the flow pattern diagrams. The results show that in the front section of the flow channel, the flow pattern is basically annular flow, which is not affected by mass flow rate and rotating speed. On the other hand, wavy flow, vortex flow, slug flow, and bubble flow can be observed when the fluid enters the middle and the end section. The higher the rotating speed and the steam mass flow rate, the more the flow pattern tends to be an annular and wavy flow. At the end of the passage, the flow pattern is mainly slug flow. The predicted flow pattern diagrams are in good agreement with the experimental result, and to obtain an effective flow pattern in the middle and the end section of the flow channel, the influence of increasing rotating speed is greater than that of increasing steam mass flow rate. However, the specific rotating speed, steam mass flow rate, and other parameters should still be set by combining with the actual situation. This work can provide some references for the further study of MCD flow characteristics.

Open Access
Comparative analysis and benchmarking of commercial and emerging fast pyrolysis technologies, TAPPI Journal May 2023

ABSTRACT: It is well established that producing sustainable fuels and replacing the fossil-based ones is one of the key solutions to achieving net-zero emissions goals. One of the most advanced commercial-scale pathways to biofuels available today is fast pyrolysis. However, due to the need for a supportive regulatory environment and mitigation strategies for uncertainties related to costs and feedstock quality, fast pyrolysis is not yet being widely implemented. In this case study, three fast pyrolysis technologies with a technology readiness level (TRL) of 6 and above have been compared to distinguish between them and identify the conditions under which they are economically viable. The circulating fluidized bed (CFB), rotating cone (RC), and mechanically assisted fluidized bed (MFB) fast pyrolysis technologies were considered. First, the flow diagram and a mass and energy balance comparison were addressed. It was revealed that the RC configuration has better bio-oil yields because it can handle smaller particles. The MFB configuration has a progressive condensation unit at the end of the process, which produces a nearly dry oil having a higher energy content. Four implementation scenarios were studied. The first was the fast pyrolysis standalone process, where all options had marginal economic attractiveness, and the RC configuration economically outperformed the other two. Integration of a fast pyrolysis plant into a sawmill in the second scenario was found to bring significant improvements in revenues and internal rate of return (IRR). Realization of the full value of bio-oil (the third scenario) brought significantly more revenues for the MFB. Finally, the fourth scenario involved adding a progressive condensation unit, which increased the capital expenditure (CAPEX) by 3%•4% while increasing revenues by 32%•35%. A sensitivity analysis highlighted the importance of financial support towards capital cost and the full valuation of bio-oil for the economic viability of fast pyrolysis processes. Progressive condensation leading to more added-value bio-oil makes the standalone fast pyrolysis process more profitable.

Call For Papers

Our conferences are known throughout the industry as the best place to learn the latest information on process troubleshooting, new technology, increasing profits and more. If you have a topic you’d like to present, please submit a proposal.

Pulp and Paper Safety Professionals: You’re Invited to Attend

Get early access to the best rates for PPSA’s 79th Annual Safety and Health Conference.