Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 21–30 of 31 results (Duration : 0.008 seconds)
Journal articles
Magazine articles
Open Access
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021

ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.

Journal articles
Magazine articles
Open Access
Preparing prehydrolyzed kraft dissolving pulp via phosphotungstic acid prehydrolysis from grape branches, TAPPI Journal January 2022

ABSTRACT: Dissolving pulp was successful prepared via phosphotungstic acid (PTA) prehydrolysis kraft (PHK) cooking followed by an elementary chlorine-free (ECF) bleaching process from grape branches. The effects of prehydrolysis temperature, reaction time, and PTA concentration that potentially affect the quality of dissolving pulp product on chemical components of pulp were studied via an orthogonal experiment. The structure of lignin was activated during the PTA prehydrolysis phase, and lignin was easily removed during the following cooking process. Thus, relatively mild conditions (140°C, 100 min) can be used in the cooking process. During the prehydrolysis phase, temperature exhibited the most significant influence on the cellulose purity of the obtained pulp fiber, followed by reaction time and PTA concentration. The optimized prehydrolysis conditions were as follows: prehydrolysis temperature, 145°C; reaction time, 75 min; and PTA concentration, 1 wt%. Whether the excessively high prehydrolysis temperature or prolonging the reaction time did not favor the retention of long chain cellulose, the delignification selectivity for the cooking process could not be further improved by excessive PTA loading. Under these prehydrolysis conditions, 94.1% and 29.0% for a-cellulose content and total yield could be achieved after the given cooking and bleaching conditions, respectively. Moreover, the chemical structure and crystal form of cellulose were scarcely changed after PTA prehydrolysis, which could be confirmed by results from Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). PTA prehydrolysis could be considered as an alternative method for preparing PHK dissolving pulp under relatively mild cooking conditions.

Journal articles
Magazine articles
Open Access
Experiments and visualization of sprays from beer can and turbo liquor nozzles, TAPPI Journal February 2022

ABSTRACT: Industrial scale swirl-type black liquor nozzles were studied using water as the test fluid. Simple water spraying experiments were found to be very beneficial for studying and comparing nozzles for black liquor spraying. These kinds of experiments are important for finding better nozzle designs. Three nozzle designs were investigated to understand the functional differences between these nozzles. The pressure loss of nozzle 1 (“tangential swirl”) and nozzle 3 (“turbo”) were 97% and 38% higher compared to nozzle 2 (“tan-gential swirl”). Spray opening angles were 75°, 60°, and 35° for nozzles 1, 2, and 3, respectively. Video imaging showed that the nozzles produced sprays that were inclined a few degrees from the nozzle centerline. Spray patter-nation showed all the sprays to be asymmetric, while nozzle 2 was the most symmetric. Laser-Doppler measure-ments showed large differences in spray velocities between nozzles. The spray velocity for nozzle 1 increased from 9 m/s to 15 m/s when the flow rate was increased from 1.5 L/s to 2.5 L/s. The resulting velocity increase for nozzle 2 was from 7 m/s to 11 m/s, and for nozzle 3, it was from 8 m/s to 13 m/s. Tangential flow (swirl) directed the spray 6°–12° away from the vertical plane. Liquid sheet breakup mechanisms and lengths were estimated by analyzing high speed video images. The liquid sheet breakup mechanism for nozzle 1 was estimated to be wave formation, and the sheet length was estimated to be about 10 cm. Sheet breakup mechanisms for nozzle 2 were wave formation and sheet perforation, and the sheet length was about 20 cm. Nozzle 3 was not supposed to form a liquid sheet. Nozzle geometry was found to greatly affect spray characteristics.

Journal articles
Magazine articles
Open Access
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021

ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.

Journal articles
Magazine articles
Open Access
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021

ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HO•) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.

Journal articles
Magazine articles
Open Access
Production of antimicrobial paper using nanosilver, nanocellulose, and chitosan from a coronavirus perspective, TAPPI Journal July 2021

ABSTRACT: The pulp and paper industry has an opportunity to play a vital role in breaking the spread of the COVID-19 pandemic through production that supports widespread use of antimicrobial paper. This paper provides a brief review of paper and paper-related industries, such as those producing relevant additives, and R&D organizations that are actively engaged in developing antimicrobial papers. The focus here is on the potential of three nano-additives for use in production of antimicrobial papers that combat coronavirus: nanosilver, nanocellulose, and chitosan. Various recent developments in relevant areas and concepts underlining the fight against coronavirus are also covered, as are related terms and concepts.

Journal articles
Magazine articles
Open Access
Boiler retrofit improves efficiency and increases biomass firing rates, TAPPI Journal March 2021

ABSTRACT: Domtar’s fluff pulp mill in Plymouth, NC, USA, operates two biomass/hog fuel fired boilers (HFBs). For energy consolidation and reliability improvement, Domtar wanted to decommission the No. 1 HFB and refurbish/retrofit the No. 2 HFB. The No. 2 HFB was designed to burn pulverized coal and/or biomass on a traveling grate. The steaming capacity was 500,000 lb/h from coal and 400,000 lb/h from biomass. However, it had never sustained this design biomass steaming rate. As the sole power boiler, the No. 2 HFB would need to sustain 400,000 lb/h of biomass steam during peak loads. An extensive evaluation by a combustion and boiler technologies supplier was undertaken. The evaluation involved field testing, analysis, and computational fluid dynamics (CFD) modeling, and it identified several bottle-necks and deficiencies to achieving the No. 2 HFB’s biomass steam goal. These bottlenecks included an inadequate combustion system; insufficient heat capture; excessive combustion air temperature; inadequate sweetwater con-denser (SWC) capacity; and limited induced draft fan capacity.To address the identified deficiencies, various upgrades were engineered and implemented. These upgrades included modern pneumatic fuel distributors; a modern sidewall, interlaced overfire air (OFA) system; a new, larger economizer; modified feedwater piping to increase SWC capacity; replacement of the scrubber with a dry electrostatic precipitator; and upgraded boiler controls.With the deployment of these upgrades, the No. 2 HFB achieved the targeted biomass steaming rate of 400,000 lb/h, along with lowered stack gas and combustion air temperatures. All mandated emissions limit tests at 500,000 lb/h of steam with 400,000 lb/h of biomass steam were passed, and Domtar reports a 10% reduction in fuel firing rates, which represents significant fuel savings. In addition, the mill was able to decommission the No. 1 HFB, which has substantially lowered operating and maintenance costs.

Journal articles
Magazine articles
Open Access
Corrosion damage and in-service inspection of retractable sootblower lances in recovery boilers, TAPPI Journal October 2021

ABSTRACT: Several reports of accidents involving serious mechanical failures of sootblower lances in chemical recovery boilers are known in the pulp and paper industry. These accidents mainly consisted of detachment and ejection of the lance tip, or even of the entire lance, to the inside of the furnace, towards the opposite wall. At least one of these cases known to the author resulted in a smelt-water explosion in the boiler.In other events, appreciable damage or near-miss conditions have already been experienced. The risk of catastrophic consequences of the eventual detachment of the lance tip or the complete lance of a recovery boiler soot-blower has caught the attention of manufacturers, who have adjusted their quality procedures, but this risk also needs to be carefully considered by the technical staff at pulp mills and in industry committees.This paper briefly describes the failure mechanisms that prevailed in past accidents, while recommending inspection and quality control policies to be applied in order to prevent further occurrences of these dangerous and costly component failures. Digital radiography, in conjunction with other well known inspection techniques, appears to be an effective means to ensure the integrity of sootblower lances in chemical recovery boilers used in the pulp and paper industry.

Journal articles
Magazine articles
Open Access
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022

ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: • The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. • Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. • Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.

Journal articles
Magazine articles
Open Access
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal October 2021

ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.