Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 21–30 of 517 results (Duration : 0.017 seconds)
Journal articles
Magazine articles
Open Access
Application of fuzzy TOPSIS in the Analyze phase of the DMAIC cycle to aid decision-making, TAPPI Journal April 2020

ABSTRACT: This paper reports the use of multicriteria analysis in the Analyze phase of the DMAIC (Define-Measure-Analyze-Improve-Control) cycle for continuous improvement. The research was carried out in a tissue paper factory located in southern Brazil. A sample of 64 parts of 16 different reels of recycled paper was used. A problem regarding paper quality variability was detected, presenting a scrap index ranging between 9% and 23%, compromising machine productivity and product sales. This motivated the implementation of a structured project supported by the application of the DMAIC cycle. The project team (machine operators, maintenance staff, supervisor, and data analyst) defined the evaluation criteria and determined the control intervals and their equivalence with linguistic variables to support the necessary evaluations for the application of fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The criteria were C1-Longitudinal Strength (Kgf), C2-Longitudinal Elongation (mm), C3-Cross-strength (kgf), C4-Cross-elongation (mm), C5-Weight (g/m²), and C6-Humidity (%). The results showed that samples with the same ranking had the lowest scrap indexes in the subsequent process. Also, the criterion C5 had a more significant impact on the quality of the product than the other criteria, which was determined from the DMAIC sequence. Improvements related to C5 should be prioritized. The fuzzy TOPSIS method presented is a flexible tool, adapting itself to the solution of the problem and contributing to the decision-making process.

Journal articles
Magazine articles
Open Access
Papermaking properties of bacterial nanocellulose produced from mother of vinegar, a waste product after classical vinegar production, TAPPI Journal April 2020

ABSTRACT: Bacterial nanocellulose (BNC) has gained a lot of attention in recent years due to its nano-size-derived properties. Although it is essentially chemically similar to plant-derived cellulose, it has smaller size and is enriched in free hydroxyl groups, which greatly improve mechanical properties of reinforced paper. However, although BNC has some unique features, it comes at a high price. In this paper, we introduce a new solution for BNC production. We have isolated bacterial nanocellulose directly from agro-industrial waste—mother of vinegar—and used it in the production of paper sheets. We show here that paper sheets made with the addition of only 10% bacterial nanocellulose from mother of vinegar substantially improved basic mechanical as well as printing properties of paper.

Journal articles
Magazine articles
Open Access
Displacement washing of softwood pulp cooked to various levels of residual lignin content, TAPPI Journal September 2021

ABSTRACT: This study investigates the influence of the degree of delignification of kraft spruce pulp cooked at seven different kappa numbers, ranging from 18.1 to 50.1, on the efficiency of displacement washing under laboratory conditions. Although the pulp bed is a polydispersive and heterogeneous system, the correlation dependence of the wash yield and bed efficiency on the Péclet number and the kappa number of the pulp showed that washing efficiency increased not only with an increasing Péclet number, but also with an increasing kappa number. The linear dependence between the mean residence time of the solute lignin in the bed and the space time, which reflects the residence time of the wash liquid in the pulp bed, was found for all levels of the kappa number. Washing also reduced the kappa number and the residual lignin content in the pulp fibers.

Journal articles
Magazine articles
Open Access
Polyvinyl alcohol as foaming agent in foam formed paper, TAPPI JOURNAL August 2019

ABSTRACT: The use of polyvinyl alcohol (PVOH or PVA) as a foaming agent in foam formed paper was investigated. Polyvinyl alcohol is a linear, nonionic water-soluble polymer. It has hydrophobic and hydrophilic parts that give it a surface-active character. PVOH is mainly characterized by degree of hydrolysis and molar mass. Degree of hydrolysis is given as mol-% hydroxyl groups on the polymer. Molar mass is measured indirectly by measuring the viscosity of a 4% PVOH solution. The results show that the degree of hydrolysis of PVOH had a strong effect on the foamability of PVOH. Foamability decreased strongly when the degree of hydrolysis increased from 88 to 98 mol-%. The effect of molar mass on foamability was weaker. We saw an increase in foam stability and bubble size with increasing molar mass, but we did not see any effect on maximum air content. PVOH dosage needed to reach >70% air content (F) varied from 2 g/l up to 10.5 g/l, and the lowest addition levels of PVOH needed were achieved with a low molar mass PVOH with a low degree of hydrolysis. The best strength properties were achieved when using fully hydrolyzed PVOH as the foaming agent. Strength properties (both in- and out-of-plane) of samples made using PVOH were better than those made using an anionic foaming agent (sodium dodecyl sulfate, SDS). By adding PVOH binder fibers to the pulp, we were able to further enhance the strength properties of paper and board.

Journal articles
Magazine articles
Open Access
Integrated study of flue gas flow and superheating process in a recovery boiler using computational fluid dynamics and 1D-process modeling, TAPPI Journal June 2020

ABSTRACT: Superheaters are the last heat exchangers on the steam side in recovery boilers. They are typically made of expensive materials due to the high steam temperature and risks associated with ash-induced corrosion. Therefore, detailed knowledge about the steam properties and material temperature distribution is essential for improving the energy efficiency, cost efficiency, and safety of recovery boilers. In this work, for the first time, a comprehensive one-dimensional (1D) process model (1D-PM) for a superheated steam cycle is developed and linked with a full-scale three-dimensional (3D) computational fluid dynamics (CFD) model of the superheater region flue gas flow. The results indicate that: (1) the geometries of headers and superheater platens affect platen-wise steam mass flow rate distribution (3%•7%); and (2) the CFD solution of the 3D flue gas flow field and platen heat flux distribution coupled with the 1D-PM affect the platen-wise steam superheating temperature (45%•122%) and material temperature distribution (1%•6%). Moreover, it is also found that the commonly-used uniform heat flux distribution approach for the superheating process is not accurate, as it does not consider the effect of flue gas flow field in the superheater region. These new observations clearly demonstrate the value of the present integrated CFD/1D-PM modeling approach.

Journal articles
Magazine articles
Open Access
Next generation dry strength additives: Leveraging on-site synthesis to develop high performance glyoxalated polyacrylamides, TAPPI Journal January 2024

ABSTRACT: Although glyoxalated polyacrylamides (gPAMs) have been described since the 1950s, the freedom to design new materials based on this chemistry has been limited by practical concerns; namely, a balance between solution concentration and material characteristics must be met to make the economics of gPAM strength additives work for the paper industry. For traditional “delivered” gPAMs, only a very narrow range of polyacrylamide molecular weights and compositions could be considered for glyoxalation. However, the development and successful implementation of automated reactor equipment that allows for the synthesis of gPAMs from glyoxal and polyacrylamide copolymers at the mill, known as “on-site” glyoxalation, obviates the shipping and stability concerns that have traditionally held back gPAM development. As such, on-site generators represent a platform that enables the glyoxalation of materials that would otherwise not have been suitable for use in a traditionally delivered gPAM product. These on-site generators therefore open new avenues for polymer design to allow for the creation of the next generation of strength additives. By leveraging the synthetic freedom of the on-site generators, a suite of high performance gPAMs has been designed, yielding materials that provide both exceptional strength and drainage performance in poor quality furnishes.

Journal articles
Magazine articles
Open Access
Totally chlorine-free peracetic acid pulping for nanocellulose isolation from hemp and poplar, TAPPI Journal August 2023

ABSTRACT: Nanocellulose is a promising and sustainable feedstock for developing advanced and functional materials. However, the characteristics of nanocellulose, such as crystallinity, surface energy, and aspect ratio, can vary depending on biomass source and pretreatment methods, leading to variable performance of the nanocellulose-based materials. In this study, cellulose nanocrystals (CNCs) were isolated from hemp and poplar using totally chlorine free (TCF) peracetic acid and sodium chlorite delignification and bleaching pretreatments to probe the influences of biomass source and treatment methods on the isolation and characteristics of CNCs. Our results showed that hemp and poplar were almost completely delignified by peracetic acid treatment, whereas sodium chlorite treatment left 5%•6% lignin in the pulp. The yields of CNCs from raw hemp and poplar biomass ranged from 9.8% to 21.9% and 10.9% to 28.3%, respectively, depending on the treatment methods. The dimensions of CNCs from TCF-treated biomass generally maintained a larger width and aspect ratio than those from sodium chlorite-treated biomass. The poplar-derived CNCs exhibited slightly higher crystallinity of 53%•58% than hemp-derived CNCs of 49%•54%. The zeta potential of the CNCs, ranging from -20.1 mV to -31.1 mV, ensured a well-dispersed aqueous solution. The surface energy (dispersive energy of 40•80 mJ/m2 and specific energy of 2•10 mJ/m2), water interaction, and thermal stability of the CNCs were comparable, regardless of the biomass source and pretreatment methods. Our finding suggests that the TCF technique with peracetic acid treatment is a promising delignification and bleaching approach to obtain cellulose-rich pulps from herbaceous and hardwood biomass for nanocellulose isolation.

Journal articles
Magazine articles
Open Access
Preparation of regenerated cellulose from rice straw lignocellulosic waste and its use for reinforced paper products, TAPPI Journal July 2021

ABSTRACT: Rice straw waste is a lignocellulosic waste produced by farmers in large quantities. In this study, regenerated cellulose (RC) from rice straw was prepared by dissolving rice straw holocellulose (HC) in NaOH/Urea/Thio-urea/Water solution by the freeze-thawing process. The crystallinity index of RC was calculated at 31%, which is out of the crystallinity range of 39%•69% that has been previously suggested.The study indicated that the RC is amorphous with a low degree of polymerization (638) and higher hydroxyl group content as compared to HC. The fiber length of RC was found to be 26.7% shorter; however, the width of RC was 21.2% higher as compared to HC. Reduced kinked fiber content was observed in the fraction of RC (18.3%) as compared with HC (39.1%), and a higher curl index of fiber was observed more so in HC (10.5%) than RC (5.6%). Because of the regeneration process, the fiber length was reduced and a fines element content of about 96% was observed in RC compared to the initial fines content of HC (56.9%). Irrespective of the high fines element content of RC, the composite paper of rice straw bleached pulp and RC fibers was developed with an increase in the tensile index from 41.4 N.m/g to 71.2 N.m/g and an increase in the burst index from 4.7 kPa.m2/g to 5.3 kPa.m2/g with the addition of 5% and 15% RC, respectively. However, enhanced tear index of paper was observed up to 5% and then it declined upon further addition of RC. The study revealed that regenerated cellulose can be used as a strength additive to overcome the shortcomings of low mechanical properties in paper products.

Journal articles
Magazine articles
Open Access
TAPPI JOURNAL, February 2007

February 2007

Journal articles
Magazine articles
Open Access
Editor's Note: An Ideal Raw Material for Pulp and Paper, TAP

Editor's Note: An Ideal Raw Material for Pulp and Paper, TAPPI JOURNAL March 2010