Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020
ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.
Journal articles
Magazine articles
Alternative “green” lime kiln fuels: Part II—Woody biomass, bio-oils, gasification, and hydrogen, TAPPI Journal May 2020
ABSTRACT: This paper is the second of a two-part series on “green” lime kiln fuels. The first part of this work reviews the use of pulp mill and recovery byproducts as either full or partial replacement of oil or natural gas in the kiln. The second part reviews the use of various forms of woody biomass, bio-oils, gasification and hydrogen as potential carbon neutral or carbon-free lime kiln fuels. Several of these options require specialized burners to supply the fuel to the kiln and high-quality metallurgy to withstand the acidic conditions of the fuel.
Journal articles
Magazine articles
Guest Editorial: Coating research addresses new product demands in response to global pandemic, TAPPI Journal November 2020
ABSTRACT: For all of us, the year 2020 has been one of significant challenge. Our communities, companies, institutions, organizations, and families have had to make many tough decisions and change our way of life as a result of the global pandemic.
Journal articles
Magazine articles
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal Octobr 2021
ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.
Journal articles
Magazine articles
Editorial: Collaboration: A necessary recipe for technological growth, TAPPI Journal September 2021
ABSTRACT: Ongoing crisis situations, such as COVID-19 and the oil spill on the Orange County beaches in California, clearly highlight the need for various forms of collaboration, be it technical or trade. Technological growth in any sector these days depends on knowhow from multiple fields.
Journal articles
Magazine articles
Dynamic CFD modeling of calcination in a rotary lime kiln with an external dryer, TAPPI Journal August 2023
ABSTRACT: Mid-kiln ring formation is a problem in lime kilns that may be related to fluctuations in the start location of calcination. To calculate fluctuations in bed and gas temperature profiles within a lime kiln with an external dryer, a dynamic two-dimensional (2D) axisymmetric computational fluid dynamics (CFD) gas model with a methane burner implemented in ANSYS Fluent, coupled by mass and heat balances to a one-dimensional (1D) bed model, was developed. The dynamic model was used to calculate changes in the location where calcination starts with fluctuations in operational conditions using pulp mill data. This model simulates radiative, convective, and conductive heat transfer between the gas, wall, and bed to determine the axial bed temperature in the kiln. The calcination reaction is described using a shrinking core model that allows for the prediction of the location at which calcination begins and the degree of calcination achieved. The solid motion within the kiln is modeled using Kramer’s equation modified for transient response. Steady-state and dynamic simulation results were compared to data from an industrial dry lime kiln, and good agreement was found. A sensitivity analysis was also performed to provide insight on how operating conditions and model variables impact the calcination location and degree of calcination. Of the variables examined, the fuel rate and the feed temperature had the largest impact on both the calcination location and degree of calcination in the kiln. Model predictions of a period of ring formation in the industrial kiln showed that the start location of calcination fluctuated by more than 2 m on either side of the mean of regular operation, warranting further investigation of the importance of these fluctuations on mid-kiln ring formation.
Journal articles
Magazine articles
Effects of different soda loss measurement techniques on brownstock quality, TAPPI Journal July 2024
ABSTRACT: The efficiency of the kraft recovery plant, bleaching process, and paper machine are affected when black liquor carryover from the brownstock washers is not controlled well. Measuring soda loss within a mill can vary from using conductivity, either in-situ or with a lab sample of black liquor filtrate squeezed from the last stage washer, to measuring absolute sodium content with a lab sodium specific ion probe or spectrophotometer. While measuring conductivity has value in tracking trends in black liquor losses, it is not an acceptable method in reporting losses in absolute units, typically in lb/ton of pulp. This is further complicated when trying to benchmark soda loss performance across a fleet of mills with multiple washer lines. Not only do the testing methods vary, but the amount of bound soda on high kappa pulps can be significant. This variability creates inconsistent results, and studies are needed to understand the effect of different testing methods on the pulp quality. In this study, soda loss is expressed as sodium sulfate (Na2SO4). Four different methods to measure soda content in pulp off commercial brownstock washers were studied: full digestion (FD), washing soaking overnight and washing (WSW), soaking in boiling water and stirring 10-min (SW-10), and squeeze-no wash (Sq). Total, washable, and bound sodium sulfate calculations were determined for each soda content measuring technique using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results showed bound and washable sodium sulfate amounts significantly depend on which soda measurement technique was used. In addition, the soda results were correlated with the pulp kappa numbers. As the kappa number increases, bound soda increases, regardless of the soda measurement method used. Impacts of high sodium sulfate in brownstock are also discussed.
Journal articles
Magazine articles
The Shendye-Fleming OBA Index for paper and paperboard, TAPPI Journal March 2022
ABSTRACT: We are proposing a new one-dimensional scale to calculate the effects of optical brightening agents (OBA) on the bluish appearance of paper. This index is separate from brightness and whiteness indices.In the paper industry, one-dimensional scales are widely used for determining optical properties of paper and paperboard. Whiteness, tint, brightness, yellowness, and opacity are the most common optical properties of paper and paperboard. Most of the papers have a blue cast generated by addition of OBA or blue dyes. This blue cast is given because of the human perception that bluer is whiter, up to a certain limit. To quantify this effect, it is necessary to determine how much blue cast paper and paperboard have. As the printing industry follows the ISO 3664 Standard for viewing, which has a D50 light source, this also plays a very important role in showing a blue cast. Color perception is based on light source and light reflected from an object. The ultraviolet (UV) component in D50 interacts with OBA to provide a reflection in the blue region of the visible spectrum. Use of a UV blocking filter results in measurements without the effect of emission in the blue region. This difference is used in determining the OBA effect in the visible range of the paper. This equation is known as the Shendye-Fleming OBA Index.
Journal articles
Magazine articles
Considerations in managing wastewater odor at pulp and paper operations, TAPPI Journal March 2022
ABSTRACT: Many pulp and paper mills are, at least periodically, faced with the release of odors that can migrate offsite and be considered a nuisance by nearby residents. At chemical pulp mills, perceptible odors associated with reduced sulfur compounds (RSCs) are common, many of which are highly perceptible owing to their low odor thresholds. As releases of RSCs and other odorous substances from production processes are progressively controlled, the proportional contribution from wastewater treatment systems to areal odors can increase. This review paper summarizes important fundamentals of odor generation, source identification, and control. Common odorous substances are identified, and mechanisms for their generation are summarized. Approaches for measuring odorous substances are detailed to enable more effective management, and various odor control strategies are discussed.
Journal articles
Magazine articles
Editorial: Industry coating expert Gregg Reed joins TAPPI Journal editorial board, TAPPI Journal Nov
ABSTRACT: TAPPI and the TAPPI JOURNAL (TJ) editorial staff would like to welcome a new member to the TJ editorial board, Gregg Reed, Ph.D., technical support leader at Imerys in Gray, GA. In his current position, Gregg develops new mineral and specialty coating products for paper and packaging applications and manages customer requests, including pilot trials. He also supervises the activities of technicians and chemists in the laboratory.