Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 31–40 of 186 results (Duration : 0.009 seconds)
Journal articles
Magazine articles
Open Access
Rewet in wet pressing of paper, TAPPI JOURNAL September 2018

Rewet in wet pressing of paper, TAPPI JOURNAL September 2018

Journal articles
Magazine articles
Open Access
Use of vent stack temperature as a feedforward variable for dissolver total titratable alkali (TTA) control, TAPPI JOURNAL May 2018

Use of vent stack temperature as a feedforward variable for dissolver total titratable alkali (TTA) control, TAPPI JOURNAL May 2018

Journal articles
Magazine articles
Open Access
Comparative study of guar gum and its cationic derivatives as pre-flocculating polymers for PCC fillers in papermaking applications, TAPPI Journal April 2022

ABSTRACT: In this work, gums from guar seeds were evaluated as a potential precipitated calcium carbonate (PCC) filler pre-flocculant to induce functional filler in papermaking applications. In recent years, guar has been conidered one of the promising wet-end additives due to its abundance, rich source of hemicellulose content, and bio-degradability. However, application of guar gum in filler pretreatment methods for producing high ash paper has scarcely been reported. In this paper, the flocculating ability of three types of guar gum was established with charge analysis and turbidity (NTU) of the system at 1% and 5% for each gum: native gum (NG) having a degree of substitution (DS) of 0, and cationic gums having a DS value of 0.07 (CL) and 0.15 (CH). It was interesting to observe that even at a 5% dose of G, the charge density of PCC did not deviate much from the initial values. The system carried a weak negativeharge, resulting in an unstable colloidal suspension that led to PCC-PCC particle bridging. On the other hand, the operative mechanism of CL and CH during adsorption and PCC flocculation was predicted to be charge neutralization and electrostatic-patch formation, accompanied by particle bridging. Note that CL, with a maximum 47.5% eduction in residual turbidity of PCC at a 1% dose, was much more efficient in doing so than the other two gums; NG had a 40% maximum reduction in residual turbidity at a 5% dose and CH had a maximum 30% reduction at a 1% ose. Later on, floc formation and structure were correlated with optical and field emission scanning electron microscopy (FE-SEM) images. In the next set of trials, paper properties were determined by varying the different gum dosages from 0.2% to 5% at a constant dose of 20% filler. It is also noteworthy to mention that with 1% CL (low DS) dose, PCC retention increased by 39%, which also enhanced the tensile, tear, burst, and opacity properties by 11%, 19%, 5%, and 4.4%, respectively, without significantly affecting the bulk properties. Further, wide-angle X-ray diffraction (XRD) analysis nd Fourier transform infrared (FTIR) analysis revealed that pre-flocculating PCC with a 1% gum dose did not induce any change in crystalline transformation. Based on observation, it was found that cationic gums with low DS values re a better choice for maximizing the strength of paper while maintaining bulk and high opacity when pre-flocculaion is adopted to increase the filler retention in paper.

Journal articles
Magazine articles
Open Access
Combustion behavior of kraft black liquor droplets from hot

Combustion behavior of kraft black liquor droplets from hot water pretreated hardwood and softwood chips, November 2016 TAPPI JOURNAL

Journal articles
Magazine articles
Open Access
On the usage of online fiber measurements for predicting bleached eucalyptus kraft pulp tensile index — an industrial case, TAPPI Journal July 2022

ABSTRACT: Cellulose pulp’s physical-mechanical properties are determined by laboratory tests obtained from prepared handsheets. However, this procedure is time intensive and presents a lead time until the results are available, hindering its utilization for monitoring and decision-making in a pulp mill. In this context, developing real-time solutions for physical-mechanical properties prediction is fundamental. This work applied a mathematical modeling approach to develop a soft sensor for tensile index monitoring. The mathematical model considers online morphology measurements obtained from the last bleaching stage outlet stream and important process variables for tensile index prediction. The results obtained are satisfactory compared to laboratory results, presenting a mean absolute percentual error of 2.5%, which agrees with the laboratory testing method’s reproducibility.

Journal articles
Magazine articles
Open Access
Modeling the dynamics of evaporator wash cycles, TAPPI Journal July 2024

ABSTRACT: Kraft pulping is a process that utilizes white liquor, composed of sodium sulfide (Na2S) and sodium hydroxide (NaOH), for wood delignification and pulp production. This process involves washing the dissolved organics and spent chemicals from the pulp, resulting in the generation of black liquor. Prior to its use as fuel in the recovery boiler, the black liquor is concentrated in multiple-effect evaporators. During the evaporation process, the inorganic salts present in the liquor become supersaturated and undergo crystallization. Fluctuations in sodium, carbonate, sulfate, and oxalate can give rise to severe sodium salt scaling events, which significantly impact the thermal efficiency of the evaporators, and ultimately, pulp production. Dynamic modeling provides insights into fluctuations in liquor chemistry in the evaporators. The primary objective of this study was to employ dynamic modeling to evaluate the effects of wash liquor recovery from evaporator wash cycles. The dynamics associated with wash cycles encompass variations in the concentrations of salts and solids in the recovered wash liquor, changes in the flow rate of wash liquor recovery, and fluctuations in liquor volume within the liquor tanks. The dynamic model was developed using Matlab Simulink and applied to the evaporation plant of a pulp mill in South America. By utilizing one month of mill process data, the model enabled the evaluation of fluctuations in liquor chemistry due to evaporator wash cycles. The developed model has demonstrated the potential to estimate the concentration of key ions responsible for scaling and to contribute to enhancements in evaporator washing strategies.

Journal articles
Magazine articles
Open Access
Online monitoring of the size distribution of lime nodules in a full-scale operated lime kiln using an in-situ laser triangulation camera, TAPPI Journal June 2024

ABSTRACT: To maximize efficiency of the recausticizing process in a pulp mill, producing a reburned lime with high and consistent reactivity is process critical. Prior investigations have demonstrated a correlation between the reactivity of lime and its nodule size, as well as the dusting behavior of the kiln. Therefore, monitoring the nodule size produced in the lime kiln could be a promising indirect method to measure the performance of the lime kiln. The objective of this investigation was to evaluate the utility of a laser triangulation camera for online monitoring of nodule size distribution for the lime kiln. A series of full-scale trials were performed in a lime kiln of a kraft pulp mill in which a camera was installed at the exit conveyor to analyze the lime discharging from the kiln. The nodule size distribution was analyzed for correlation with the lime temperature, flue gas temperature, and rotational speed of the kiln. The monitoring demonstrated temporal stability, and the results showed that the lime temperature had the most significant effect on the nodule size. The rotational speed of the lime kiln and the flue gas temperature showed limited effect on nodule size, but they had significant impact on the specific energy demand. The overall conclusion of the study is that the camera methodology effectively correlates lime temperature with nodule size distribution, and it advocates for the methods of implementation in automating lime temperature control, facilitating the production of consistently reactive lime at a lower specific energy consumption.

Journal articles
Magazine articles
Open Access
Understanding the energy and emission implications of new technologies in a kraft mill: Insights from a CADSIM Plus simulation model, TAPPI Journal June 2024

ABSTRACT: Kraft mills play a vital role in energy transition because they have significant potential to reduce their own energy utilization and produce energy/products to decarbonize other sectors. Through biomass combustion and potential biogenic carbon emissions capture, these mills can contribute to offsetting emissions from other sectors. This research investigates the departmental and cross-departmental implications of technology upgrades on energy, steam, emissions, water, and chemicals using a CADSIM Plus simulation model. The model provides a comprehensive analysis of mass and energy balances, offering valuable insights into the benefits and limitations of each technology. The model facilitates scenario analysis and comparisons of process configurations, enabling data-driven decision-making for sustainable and competitive operations. Six high-impact technologies, including additional evaporator effects, weak black liquor membrane concentration, belt displacement washer for brownstock washing, oxygen delignification, and improvements to the pulp machine shoe press and vacuum pumps, are evaluated. Individual technologies resulted in energy savings of 1.2% to 5.4%, biomass consumption reductions of 8.6% to 31.6%, and total emissions reductions of 1.6% to 5.9%. Strategic decision-making must consider existing mill limitations, future technology implementation, and potential production increases. Future research will explore product diversification, biorefineries, and pathways to achieve carbon-negative operations, aiming to reduce emissions and secure a competitive future for kraft mills.

Journal articles
Magazine articles
Open Access
Editorial: Unlock the gates! TAPPI Journal moves to fully Open Access research for all, TAPPI Journal March 2022

At TAPPI’s Board of Director’s meeting in February, Peter Hart, associate editor of TAPPI Journal and also a member of TAPPI’s Board of Directors, gave a presentation on the benefits of the journal being fully OA, including the face that its research would serve to advance science and engineering by easily circulating through a broader community that studies these industry.

Journal articles
Magazine articles
Open Access
Utilization of kraft pulp mill residuals, TAPPI Journal February 2022

ABSTRACT: Kraft pulp mills produce on average about 100 kg of solid residuals per metric ton of pulp produced. The main types of mill waste are sludge from wastewater treatment plants, ash from hog fuel boilers, dregs, grits, and lime mud from causticizing plants and lime dust from lime kilns. Of these, about half is disposed of in landfills, which highlights the need and potential for waste recycling and utilization. Sludge is either incinerated in hog fuel boilers to generate steam and power or used in various forms of land application, including land spreading, composting, or as an additive for landfill or mine waste covers. The majority of hog fuel boiler ash and causticizing plant residues is landfilled. Alkaline residuals can be conditioned for use in land application, manufacture of construction materials, and production of aggregates for road work. This technical review summarizes residuals utilization methods that have been applied in pulp and paper mills at demonstration- or full-scale, and therefore may act as a guide for mill managers and operators whose goal is to diminish the costs and the environmental impact of waste management.