Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 4,641–4,650 of 4,725 results (Duration : 0.016 seconds)
Journal articles
Magazine articles
Open Access
Mechanical modification of softwood pulp fibers using a novel lightweight vertical bar plate, TAPPI Journal April 2021

ABSTRACT: Refiner plates made using sand casting have a draft angle, which results in a trapezoidal bar shape. These trapezoidal bar plates have a limited throughput compared to the vertical bar plates, and eventually the edges of the bars become dull, resulting in longer time to reach the target freeness and shorter service life. The new light-weight refiner plate with a bar insertion method into a plate base was developed by selecting an aluminium-based alloy as the plate base material and a stainless steel alloy with high wear resistance as the bar material. The light-weight plate with sharp bar edges was very effective in reducing refining energy by reaching the target freeness faster than the sand-cast bar plate. Finally, the lightweight sharp bar plate, which weighed only about half the weight of the cast bar plate, was expected to significantly contribute to easy replacement, improved paper quality, and larger throughput without excessive loss of fiber length.

Journal articles
Magazine articles
Open Access
Development of reinforced paper and mitigation of the challenges of raw material availability by utilizing Areca nut leaf, TAPPI Journal September 2022

ABSTRACT: Paper industries are facing a raw material crisis and searching for alternate raw materials that may be able to help mitigate the issue. Many industries use agro-waste as a raw material, irrespective of it having low bleachability and poor mechanical strength. Areca nut leaf (ANL) is a nonwood-based material that may be acceptable as an alternate source of raw material that contains 61.5% holocellulose and 13.6% lignin, which is comparable to other agro-wastes and hardwood pulps. Kraft anthraquinone pulping with 20% active alkali as sodium oxide (Na2O), 25% sulfidity, and 0.05% anthraquinone produced 15 kappa pulps with about 38.5% pulping yield. The bleachability of ANL pulp was good, and 83.5% ISO brightness could be achieved using the D0(EOP)D1 bleaching sequence. The ANL fiber has 33.8% better tensile, 54.5% better tear, and 15.2% better burst index than hardwood fiber. Similarly, 60.4% better tensile, 56.5% better tear, and 21.7% better burst index were observed in ANL than in wheat straw. Thus, the study revealed that Areca nut leaf can be used as an alternative raw material for papermaking, as well as to improve the physical property of paper products by blending it with inferior quality pulp.

Journal articles
Open Access
Corrosion Mnitoring and Root Cause Identification in High So

Corrosion Mnitoring and Root Cause Identification in High Solids Concentrators, TAPPI JOURNAL July 2016

Journal articles
Open Access
Effects of localized environment on eucalyptus clone chemica

Effects of localized environment on eucalyptus clone chemical composition, TAPPI JOURNAL September 2016

Journal articles
Magazine articles
Open Access
Decreased water usage in a softwood ECF bleaching sequence— full mill simulations, TAPPI JOURNAL June 2018

Decreased water usage in a softwood ECF bleaching sequence— full mill simulations, TAPPI JOURNAL June 2018

Journal articles
Magazine articles
Open Access
How to use total dissolved solids measurements to evaluate the performance of diffuser washers—A mill study, TAPPI Journal April 2020

ABSTRACT: Various types of pulp washing equipment are available. Each washing device has a unique mechanical construction, and the washing principle is often a combination of dilution, thickening, and displacement washing. In this work, the performance of the pressure diffuser washer is studied. In stepwise trials, the effect of the feed and discharge consistencies on the performance of the diffuser was studied. The effect of the downward velocity of the screen on the pressure diffuser’s washing efficiency was also studied. The measurement of total dissolved solids (TDS) by a process refractometer was used as a wash loss measurement unit and the refractometer’s results were used in the calculations of standardized Nordén efficiency (E10) values. The chemical oxygen demand (COD) and conductivity values were also measured and their results compared to the TDS results.The results indicated that feed consistency has a significant effect on the performance and effectiveness of the diffuser washers in the mill. It can also be stated that when the downward velocity of the screen is adjusted to too high a level, the washing efficiency of the pressure diffuser decreases. As a conclusion from the mill tests, it can be stated that even small process parameter changes can provide enhanced diffuser washing at the beginning of the washing line, which has a direct effect on the performance of post-oxygen washing.

Journal articles
Magazine articles
Open Access
Viscoelastic web curl due to storage in wound rolls, TAPPI Journal July 2020

ABSTRACT: Winding is often the final operation in a roll-to-roll manufacturing process. Web materials, i.e., materials that are thin compared to their length, are wound into rolls because this form is the only practical means to store them. The resulting bending strains and associated stresses are large for thick webs and laminates. As many webs are viscoelastic on some time scale, bending stresses lead to creep and inhomogeneous changes in length. When the web material is unwound and cut into discrete samples, a residual curvature remains. This curvature, called curl, is the inability for the web to lie flat at no tension. Curl is an undesirable web defect that causes loss of productivity in a subsequent web process. This paper describes the development and implementation of modeling and experimental tools to explore and mitigate curl in homogenous webs. Two theoretical and numerical methods that allow the prediction of curl in a web are developed: a winding software based on bending recovery theory, and the implementation of dynamic simula-tions of winding. One experimental method is developed that directly measures the curl online by taking advantage of the anticlastic bending resulting from the curl. These methods are demonstrated for a low-density polyethylene web.

Journal articles
Magazine articles
Open Access
Upscaling of foam forming technology for pilot scale, TAPPI JOURNAL August 2019

ABSTRACT: The need for production cost savings and changes in the global paper and board industry during recent years have been constants. Changes in the global paper and board industry during past years have increased the need for more cost-efficient processes and production technologies. It is known that in paper and board production, foam typically leads to problems in the process rather than improvements in production efficiency. Foam forming technology, where foam is used as a carrier phase and a flowing medium, exploits the properties of dispersive foam. In this study, the possibility of applying foam forming technology to paper applications was investigated using a pilot scale paper forming environment modified for foam forming from conventional water forming. According to the results, the shape of jet-to-wire ratios was the same in both forming methods, but in the case of foam forming, the achieved scale of jet-to-wire ratio and MD/CD-ratio were wider and not behaving sensitively to shear changes in the forming section as a water forming process would. This kind of behavior would be beneficial when upscaling foam technology to the production scale. The dryness results after the forming section indicated the improvement in dewatering, especially when foam density was at the lowest level (i.e., air content was at the highest level). In addition, the dryness results after the pressing section indicated a faster increase in the dryness level as a function of foam density, with all density levels compared to the corresponding water formed sheets. According to the study, the bonding level of water- and foam-laid structures were at the same level when the highest wet pressing value was applied. The results of the study show that the strength loss often associated with foam forming can be compensat-ed for successfully through wet pressing.

Journal articles
Magazine articles
Open Access
Evaporation of process water from recycled containerboard mills, TAPPI Journal July 2023

ABSTRACT: The reduction of the specific effluent discharge volumes of paper mills leads to concentrated process waters that are difficult to treat. Evaporation is an effective water reclamation technology; however, its feasibility largely depends on the fouling behavior of the calcium rich process water. A pilot plant study was conducted to investigate fouling of an evaporator processing the production water from a recycled containerboard mill. The evaporator was operated continuously for five weeks at an evaporation temperature of 55°C and a differential temperature of 5°C, and with a recovery rate of approximately 90%. The calcium ion concentration of the circulating liquor exceeded 7,000 mg/L with a pH of 6. Despite the high fouling potential of the circulating liquor, the heat transfer coefficient did not decline over the investigated trial. The absence of deposits on large areas of the heating surfaces demonstrate that the process water does not generally form deposits under the conditions that were investigated. Calcium sulfate deposits were only found in areas where there was inadequate coverage of liquid over the heating surfaces.The findings show that evaporators can be used to effectively close the water system of recycled containerboard mills without fouling impacting the energy efficiency.

Journal articles
Magazine articles
Open Access
Use of fines-enriched chemical pulp to increase CTMP strength, TAPPI Journal April 2021

ABSTRACT: In this study, fines-enriched pulp (FE-pulp)—the fine fraction of highly-refined kraft pulp—was benchmarked against highly-refined kraft pulp (HRK-pulp) as a strength agent in eucalyptus chemithermomechanical pulp (CTMP). Both the FE-pulp and the HRK-pulp were produced from unbleached softwood kraft pulp, and equal amounts of those strength agents were added to the original CTMP, as well as to washed CTMP, where most of the fines had been removed. The effects of the added strength agents were evaluated with laboratory handsheets.The FE-pulp proved to be twice as effective as HRK-pulp. Both HRK-pulp and FE-pulp increased the strength of the CTMP handsheets. The bulk of the handsheets decreased, however, as well as the drainability. The addition of 5% FE-pulp resulted in the same strength increase as an addition of 10% HRK-pulp, as well as the same decrease in bulk and CSF. For the handsheets of washed CTMP, the strengths were not measurable; the CTMP lost the sheet strength when the CTMP-fines content was reduced through washing. The reduced strength properties were compensated for by the addition of chemical pulp fines that proved to be an efficient strength agent. The addition of 5% FE-pulp restored the strength values, and at a higher bulk and higher drainability.