Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 4,671–4,680 of 4,725 results (Duration : 0.081 seconds)
Journal articles
Magazine articles
Open Access
Gas dispersion in the oxygen delignification process, TAPPI Journal May 2021

ABSTRACT: There has been very little knowledge about the state of gas dispersion in the oxygen delignification process, even though this has a major impact on the performance of the reactor. This paper presents a new continu-ous inline method for measuring oxygen bubble size distribution in the reactor, as well as results from studies con-ducted in softwood and hardwood lines. This new measurement worked well, and new information about oxygen bubble size, as well as how different reactor conditions affected the distribution, was obtained. For example:œ In the softwood line, the mean volume-weighted bubble size was about 0.1 mm, whereas in the hardwood line, this size was almost 10 times higher. For both lines, there was considerable variation in the measured bubble size over the long term.œ For both lines, an increase in mixer rotation speed caused a discernible decrease in the bubble size, and an increase in oxygen charge caused a discernible increase in the bubble size.œ In the softwood line, no coalescence of the bubbles in the reactor was observed, but in the hardwood line, some coalescence of the larger bubbles occurred.œ In the test conducted in the hardwood line, the use of brownstock washer defoamer caused a discernible increase in oxygen bubble size.œ In the hardwood line, reactor pressure had a noticeable effect on the amount of delignification, which indicated that improving mass transfer of oxygen (e.g., by decreasing the oxygen bubble size, in this case) should also have an increasing effect on the delignification.

Journal articles
Magazine articles
Open Access
The role of gas dispersion in the oxygen delignification process, TAPPI Journal May 2021

ABSTRACT: Oxygen delignification is an essential part of the pulp production process. Delignification occurs with the aid of alkali and dissolved oxygen. Dissolved oxygen is obtained by dispersing oxygen gas into the pulp suspension by using efficient mixers. Little is known about the state of oxygen gas dispersion and its effect on oxygen delignification kinetics and efficiency. This paper will present the results for the effect of gas bubble size on the performance of oxygen delignification. The results are mainly based on detailed studies made in a Finnish hardwood mill where the oxygen bubble size distribution could be altered at the feed of the reactor. An essential aspect of these studies was the use of a new continuous inline gas bubble size measurement system to simultaneously determine the bubble size distribution at the feed and top of the reactor. Information about oxygen consumption in the reactor could also be obtained through the bubble size measurements. Accordingly, these studies quantify the effect of oxygen bubble size on the kappa reduction of the pulp. The effect of different chemical factors on the oxygen bubble size is also studied.Finally, the relationship between the gas bubble size and the liquid phase oxygen mass transfer coefficient (kLa) is presented. This connects the bubble size to the kappa reduction rate. Based on the presented modeling approach and the evaluation of practical factors that are not taken into account in the modeling, it was concluded that the volumetric average oxygen bubble size should preferably be smaller than 0.2 mm in practice.The information obtained with the new gas bubble size measurement system and the presented modeling approach give a very new basis for understanding, monitoring, adjusting, and designing oxygen delignification processes.

Journal articles
Magazine articles
Open Access
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2023

ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease, water, water vapor, and oxygen, for applications such as food packaging, food service, and other non-food packaging. Today, there is increasing interest in developing recyclable and more sustainable approaches for producing these types of packages. This paper focuses on water-based barrier coatings (WBBC) for oil and grease resistance (OGR), water, moisture vapor transmission rate (MVTR), and oxygen barrier performance. The main goal is to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC) in a single application step. One advantage is in optimizing coating material cost with the use of functional chemistry in confined layers where performance is balanced within the coating layered structure. This allows simultaneous application of layers of different polymer types in one step to achieve the appropriate performance needs for a given barrier application. This paper provides working examples of using MLCC to create coating structures with multiple barrier properties in a single application pass. Barrier polymers studied include styrene butadiene, styrene acrylate, starch-containing emulsions, and polyvinyl alcohol. The paper also shows the effect of increasing the pigment volume concentration with platy clay or fine ground calcium carbonate on MVTR and OGR barrier properties.

Journal articles
Magazine articles
Open Access
Surface energy considerations for offset printing of coated paper and paperboard, TAPPI Journal November 2023

ABSTRACT: Offset printing of coated paper involves the complex interactions of ink with a surface that is characterized by three major properties: roughness, porosity, and related pore network structure and surface chemistry (related to surface free energy [SFE]). The effects of porosity and roughness are relatively well understood and are documented in the literature, whereas the influence of surface chemistry is much less studied and therefore the focus of this paper. The key results shown include: i) Coating porosity has a negligible effect on SFE determination by contact angle using two fluids. ii) The chemistry of the latex polymer in the coating formulation dominates the influence on SFE compared to pigment, with any surface energy differences present in the pigment being almost completely masked by latex. iii) Wetting agent and corona treatment can impact water absorption rate and surface spreading of water, resulting in small differences in printability. Increasing the concentration of the surfactant on a coated surface indicates switching orientation of the surfactant molecules, giving a “step wise” printing result. When looking to improve offset printability by selection of different pigments, the variation in SFE is less important than variation in either surface roughness or porosity.

Journal articles
Magazine articles
Open Access
Preparing prehydrolyzed kraft dissolving pulp via phosphotungstic acid prehydrolysis from grape branches, TAPPI Journal January 2022

ABSTRACT: Dissolving pulp was successful prepared via phosphotungstic acid (PTA) prehydrolysis kraft (PHK) cooking followed by an elementary chlorine-free (ECF) bleaching process from grape branches. The effects of prehydrolysis temperature, reaction time, and PTA concentration that potentially affect the quality of dissolving pulp product on chemical components of pulp were studied via an orthogonal experiment. The structure of lignin was activated during the PTA prehydrolysis phase, and lignin was easily removed during the following cooking process. Thus, relatively mild conditions (140°C, 100 min) can be used in the cooking process. During the prehydrolysis phase, temperature exhibited the most significant influence on the cellulose purity of the obtained pulp fiber, followed by reaction time and PTA concentration. The optimized prehydrolysis conditions were as follows: prehydrolysis temperature, 145°C; reaction time, 75 min; and PTA concentration, 1 wt%. Whether the excessively high prehydrolysis temperature or prolonging the reaction time did not favor the retention of long chain cellulose, the delignification selectivity for the cooking process could not be further improved by excessive PTA loading. Under these prehydrolysis conditions, 94.1% and 29.0% for a-cellulose content and total yield could be achieved after the given cooking and bleaching conditions, respectively. Moreover, the chemical structure and crystal form of cellulose were scarcely changed after PTA prehydrolysis, which could be confirmed by results from Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). PTA prehydrolysis could be considered as an alternative method for preparing PHK dissolving pulp under relatively mild cooking conditions.

Journal articles
Magazine articles
Open Access
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022

ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: œ The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. œ Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. œ Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.

Journal articles
Magazine articles
Open Access
Energy saving potential of interstage screen fractionation for production of board grade BCTMP, TAPPI Journal August 2023

ABSTRACT: Over the last few decades, the continuing decline in mechanical pulp-based grades has led pulp producers to modify operations and implement measures to reduce production costs in order to stay competitive. In spite of a considerable effort to reduce energy consumption, the latter is still a major portion of production costs in the process of making bleached chemithermomechanical pulp (BCTMP). In this study, we evaluated the impact of interstage screening fractionation (ISSF) and secondary refining strategy for producing BCTMP with the objective of reducing refining energy consumption while maintaining or improving bulk and strength properties. In the first step and to establish a baseline for a mill’s existing configuration, the collected primary refined pulp and reject streams from the ISSF were refined in a high consistency (HC) refiner to target freeness levels. The accepts and refined rejects streams were recombined, and their properties were compared to those of the refined primary pulp. The results showed that, at a given freeness of 400 mL and compared to the control case (without fractionation), the ISSF using an 0.070 in. basket followed by rejects refining could lead to about 25% energy saving in the second stage HC refining. Handsheet properties showed that utilization of ISSF could produce BCTMP with higher bulk and similar average fiber length and tear index. However, a slight reduction in tensile strength was observed. In the second set of trials, the primary refined pulp and the rejects from the ISSF using the 0.070 in. basket were refined by a low-consistency (LC) refiner. The results showed that, at the same freeness of 400 mL and compared to refined primary pulp, the ISSF saved about 26% in net LC refining energy. At a specific edge load (SEL) of 0.4 J/m, the produced pulp had similar bulk and strength properties compared to those of the control sample. A higher SEL of 0.6 J/m in LC refining could further decrease net refining energy consumption; however, it also led to reduction in fiber length, bulk, and strength properties.

Journal articles
Magazine articles
Open Access
The use of minerals in fiber-based packaging and pulp molding, TAPPI Journal January 2024

ABSTRACT: Minerals are widely used in the pulp and paper industry for aiding the processing, economics, and final quality of fiber-based products. Among these, calcium carbonate, talc, and kaolin are widely used as fillers, and these can have varying brightness, particle size distributions, and aspect ratios. For the molded fiber area, these minerals can raise the solids content of the pulp mixture and improve throughput and lower energy requirements for drying. Talc is also widely used as a process control agent, picking up pitch and stickies and improving productivity by lowering machine cleaning time.The replacement of single use plastic with fiber-based replacements is a global trend; however, it does come with some significant challenges, such as grease and moisture proofing. Previously, per- and polyfluoroalkyl substances (PFAS) have been used to provide functions such as water and grease repellency, but regulatory demands have seen its demise in the packaging industry. Therefore, water holdout is now generally achieved by addition of alkyl ketene dimer (AKD) sizing. Wax additives are being developed and tested as PFAS replacements for oil and grease resistance. Rather than strongly repelling lipids from the fiber surface, these PFAS alternatives restrict flow pathways and react with food oils to alter their flow characteristics to prevent penetration through the substrate. During studies incorporating both PFAS substitutes and minerals, no detrimental interactions were observed. This paper addresses the different needs of the molded fiber market by including mineral fillers in molded fiber articles and will be presented as a series of different case studies. In all studies, we show that the trends observed when mineral filler is added to molded fiber are broadly similar to those seen in conventional paper and paperboard applications. Mineral addition in all studies gave improvements in productivity and optical appearance. With its organophilic surface, hydrophobic talc had the additional advantage of pitch and sticky control, and although a small decrease in strength was always observed when filler was added, the final articles still retained sufficient strength for their particular application. This small strength reduction should be balanced against the productivity gains.

Journal articles
Open Access
Corrosion Monitoring and Root Cause Identification in High Solids Concentrators

Black liquor high solids (about 80%) concentrators have often been found to suffer from aggressive corrosion. In particular, the first and second effect bodies are susceptible to corrosion attacks resulting in tube leaks and wall thinning, which limit the availability and lifetime of evaporator lines. Corrosion dynamics and construction materials have been studied extensively within the pulp and paper industry to understand the corrosion process. However, it has been challenging to identify root causes for corrosion, which has limited proactive measures to minimize corrosion damage. Corrosion of the first phase concentrator was studied by defining the potential regions for passive area, stress corrosion cracking, pitting corrosion, and general corrosion. This was achieved by using a technique called polarization scan that reveals ranges for the passive area in which the equipment is naturally protected against corrosion. The open circuit potential, also known as corrosion potential, and linear polarization resistance of the metal were monitored online, which allowed for definition of corrosion risks for stainless steel 304L and duplex stainless steels 2205 and SAF 2906. An online temperature measurement added insight to the analysis. A process diagnostics tool was used to identify root causes of the corrosion attacks. Many of the root causes were related to process conditions triggering corrosion. Once the metal surface was activated, it was difficult to repassivate the metal naturally unless a sufficient potential range was reached.

Journal articles
Magazine articles
Open Access
Decision-making process for the identification of preferred

Decision-making process for the identification of preferred lignin-based biorefinery strategies, TAPPI JOURNAL April 2017