Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 41–50 of 53 results (Duration : 0.012 seconds)
Journal articles
Magazine articles
Open Access
A new approach for the preparation of cellulose nanocrystals from bamboo pulp through extremely low acid hydrolysis, TAPPI Journal January 2020

ABSTRACT: As a renewable and biodegradable nanomaterial, cellulose nanocrystal (CNC) has a wide range of potential applications, but production of CNC faces significant challenges in capital investment and manufacturing cost. In this work, the one-step preparation of CNC from bleached kraft bamboo pulp by extremely low acid (concen-tration of acid = 0.1 wt%) hydrolysis was demonstrated. The experimental data indicated that the yield of CNC was strongly affected by the operating pressure and concentration of hydrochloric acid (HCl), as well as temperature. Rod-like CNC with a mean particle size of 524 nm was obtained through an extremely low acid (ELA) hydrolysis pro-cess. The yield of CNC can reach to 37.1% by an ELA hydrolysis process at 180°C for 60 min with 0.08 wt% HCl and 20 MPa operating pressure. The Fourier transform-infrared spectroscopy (FTIR) measurements show that the as-pre-pared CNC maintained cellulose structure. Compared with a conventional CNC prepared by strong sulfuric acid (H2SO4) hydrolysis, the CNC prepared by ELA hydrolysis process exhibited much higher thermal stability.

Journal articles
Magazine articles
Open Access
Nanocellulose•cationic starch• colloidal silica systems for papermaking: Effects on process and paper properties, TAPPI Journal October 2022

ABSTRACT: Laboratory tests were conducted to better understand effects on the papermaking process and handsheets when recycled copy paper furnish was treated with combinations of nanofibrillated cellulose (NFC), cationic starch, colloidal silica, and cationic retention aid (cPAM; cationic polyacrylamide). Dosage-response experiments helped to define conditions leading to favorable processing outcomes, including dewatering rates and the efficiency of fine-particle retention during papermaking. Effects were found to depend on the addition amounts of cationic starch and colloidal silica added to the system. It was shown that the presence of a polymer additive such as cationic starch was essential in order to achieve large strength gains with simultaneous usage of NFC.

Journal articles
Magazine articles
Open Access
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020

ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.

Journal articles
Magazine articles
Open Access
Fabrication of cross-linked starch-based nanofibrous mat with optimized diameter, TAPPI JOURNAL June 2019

ABSTRACT: The design and synthesis of natural and synthetic polymer blends have received recent and wide attention. These new biomaterials exhibit progress in properties required in the field of medicine and healthcare. Herein, the aim of present study is to fabricate starch (ST)/polyacrylic acid (PAA) electrospun nanofibrous mat with a smooth and uniform morphology, lowest fiber diameter (below 100 nm) and the highest possible starch content. Starch itself is poor in process-ability, and its electrospinning could be quite a challenging process. To address this, we carried out the response surface methodology (RSM) technique for modelling the electrospinning process. In order to have ST/PAA nanofibers with the finest possible diameter, optimized processing parameters (applied volt-age, nozzle-collector distance and feed rate) obtained from RSM technique were applied. ST/PAA electrospun nano-fibers with an average diameter of 74±13 nm were successfully achieved via the electrospinning method for the first time. The structure, preparation and properties of the nanofibrous structure were discussed. Results indicated that drug loaded ST/PAA blend nanofibrous structure has a great potential to be used in controlled drug release systems.

Journal articles
Magazine articles
Open Access
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020

ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.

Journal articles
Magazine articles
Open Access
Novel thin functional coatings for paper by foam coating, T

Novel thin functional coatings for paper by foam coating, TAPPI JOURNAL April 2017

Journal articles
Magazine articles
Open Access
A novel predictive method for filler coflocculation with cellulose microfibrils, TAPPI Journal November 2019

ABSTRACT: Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and benonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.

Journal articles
Magazine articles
Open Access
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020

ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.

Journal articles
Magazine articles
Open Access
Rice straw-based sustainable food packaging material with improved strength and barrier properties: Development and characterization, TAPPI Journal October 2023

ABSTRACT: Sustainable food packaging paper with high barrier and strength properties was developed with rice straw nanocellulose materials. Pulping and bleaching of rice straw were performed using an organosolv pulping and DED (D: chlorine dioxide bleaching; E: sodium hydroxide extraction) bleaching sequence. Bleached rice straw pulp was refined to 90°SR using a laboratory Valley beater. The laboratory handsheets were prepared using pulp slurry at 40°SR and 90°SR. The handsheets of cellulose nanofibrils (CNFs) made of highly refined pulp (90°SR) were surface sized using alkyl ketene dimer (AKD) wax to increase the barrier properties of paper for selective food packaging applications. The paper samples were tested for mechanical, optical, surface, and barrier properties, including tensile index, burst index, tearing index, bending stiffness, elongation, porosity, apparent density, opacity, Cobb value, water vapor transmission rate (WVTR), oil and grease resistance, and contact angle. The refined pulp (90°SR) was analyzed using field-emission scanning electron microscopy (FE-SEM), and it was observed that the morphology of the developed fibers changes to the nanoscale (<100 nm) for at least one dimension. The particle size distribution of the refined pulp using DLS analyzer also confirmed the cellulose fibers to near nanoscale. It was concluded that nanofibers were formed by a high degree of the mechanical pulp refining process and found to be much more economical than alternative processes in this direction. The sample handsheets of CNFs showed good strength and barrier properties. The barrier properties further increased when surface sizing was done using low-cost, nontoxic, and biodegradable AKD wax.

Journal articles
Magazine articles
Open Access
Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk, TAPPI JOURNAL July 2018

Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk, TAPPI JOURNAL July 2018