Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 41–50 of 58 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Effects of phosphogypsum whiskers modification with calcium stearate and their impacts on properties of bleached softwood paper sheets, TAPPI Journal September 2021

ABSTRACT: By combining the structural properties and characteristics of phosphogypsum whiskers, a preliminary study on the modification of phosphogypsum whiskers and their application in papermaking was carried out. The effects of reaction temperature, reaction time, and reaction concentration on the solubility and retention of modified phosphogypsum whiskers and the effects of phosphogypsum whiskers on the physical properties of paper under different modified conditions were explored. The research results show that, after the phosphogypsum whiskers are modified with calcium stearate, a coating layer will be formed on the surface of the whiskers, which effectively reduces the solubility of the phosphogypsum whiskers. The best modification conditions are: the amount of calcium stearate relative to the absolute dry mass of the phosphogypsum whisker is 2.00%; the modification time is 30 min, and the modification temperature is 60°C. The use of modified phosphogypsum whiskers for paper filling will slightly reduce the whiteness, folding resistance, burst resistance, and tensile strength of the paper, but the tearing degree and retention of the filler will be increased to some extent.

Journal articles
Magazine articles
Open Access
Key material properties in crease cracking of kraft paper, TAPPI Journal February 2021

ABSTRACT: Crease cracking of paperboard is important to control for the appearance and structural integrity of packages. Crease cracking is affected by creasing operation variables, as well as the physical properties of the paperboard. However, the effects of the physical properties are not clearly known. The objectives of this work were to identify the key material properties that affect crease cracking and to clarify the effects of fiber composition and starch. Laboratory sheets were produced from bleached and refined softwood and hardwood commercial pulp at grammage and thicknesses that match a typical paperboard. To mimic papermaking operations, surface starch was applied via a bench-top size press. The sheets were creased in the lab over a range of penetration depths, and reverse-side cracking was measured. The results showed that less reverse-side cracking was correlated with higher tensile post-peak energy, a lower bending stress, and a lower z-direction (ZD) stiffness. The tensile post-peak energy is a measure of the resistance to crack growth via fiber-bridging. The bending force and the ZD stiffness influence the forces that create cracks. It was observed that decreasing the ratio of hard-wood-to-softwood content and reducing the amount of starch would both decrease crease cracking.

Journal articles
Magazine articles
Open Access
Rheological characteristics of platy kaolin, TAPPI JOURNAL September 2019

ABSTRACT: Platy kaolin can provide significant value in the coating of paper and paperboard. It can be used in multiple applications and can provide benefits such as titanium dioxide (TiO2) extension, smoothness improvement, improved print gloss or ink set rates, calendering intensity reduction, and improved barrier properties. It is not a pigment that can be simply substituted for traditional hydrous kaolin without some adjustment to the coating formulation. These adjustments can be as simple as reducing solids, but may require binder changes as well. The coater setup may need to be adjusted because of the unique rheological behaviors these pigments exhibit.The unique rheological characteristics of platy kaolin are explored here. Measurements of the water retention of platy kaolin containing coatings confirm that water retention is not reduced in comparison to more blocky kaolin pigments, despite the lower coating solids at which they need to be run. This means that the rheological characteristics are the most important in understanding the runnability. An extensive analysis reveals some unique behaviors that need to be understood when utilizing these materials. Viscoelastic measurements indicate that, for this binder system, Tan d is mainly a function of solids. This may explain how weeping is initiated on a blade coater. The degree of shear thinning behaviors is investigated using the Ostwald de-Waele power law. The immobilization point was determined using the Dougherty-Krieger equation and related to the work of Weeks at the University of Maine on blade coater runnability. An indirect measure of particle shape and size synergy is also demonstrated using the Dougherty-Krieger equation parameters.

Journal articles
Magazine articles
Open Access
Numerical investigation of the effect of ultrasound on paper drying, TAPPI Journal March 2022

ABSTRACT: The paper drying process is very energy inefficient. More than two-thirds of the total energy used in a paper machine is for drying paper. Novel drying technologies, such as ultrasound (US) drying, can be assessed numerically for developing next-generation drying technologies for the paper industry. This work numerically illustrates the impact on drying process energy efficiency of US transducers installed on a two-tiered dryer section of a paper machine. Piezoelectric transducers generate ultrasound waves, and liquid water mist can be ejected from the porous media. The drying rate of handsheet paper in the presence of direct-contact US is measured experimentally, and the resultant correlation is included in the theoretical model. The drying section of a paper machine is simulated by a theoretical drying model. In the model, three scenarios are considered. In the first scenario, the US modules are positioned in the dryer pockets, while in the second scenario, they are placed upstream of the drying section right after the press section. The third case is the combination of the first and second scenarios. The average moisture content and temperature during drying, enhancement of total mass flux leaving the paper by the US mechanism, total energy consumption, and thermal effect of heated US transducers are analyzed for all cases. Results show that the application of the US can decrease the total number of dryer drums for drying paper. This numerical study is based on the US correlation obtained with the US transducer direct-contact with the paper sample. Thus, future work should include US correlation based on a non-contact US transducer.

Journal articles
Magazine articles
Open Access
Furnishing autohydrolyzed poplar weakly alkaline P-RC APMP to make lightweight coated base paper, TAPPI Journal February 2022

ABSTRACT: This work investigated the effects of autohydrolysis pretreatment severity on poplar (Populus tomentosa Carr.) woodchips used to make a type of high-yield pulp (HYP) known as preconditioning followed by refiner chemical treatment, alkaline peroxide mechanical pulp (P-RC APMP). It also investigated the ratios for partially replacing sodium hydroxide (NaOH) with magnesium oxide (MgO) in the high-consistency (HC) retention stage of the P-RC APMP process on the obtained HYP’s properties. The results show that the pretreatment severity of autohydrolysis at combined hydrolysis factor (CHF) = 10.77 and the 50 wt% ratio for partially substituting NaOH with MgO were the optimum conditions for making light-weight coated (LWC) base paper. Compared to the conventional P-RC APMP, the optimized P-RC APMP had similar bulk and higher tensile, burst, and tear indices, as well as opacity, but a slightly lower ISO brightness. When the optimized P-RC APMP and commercial softwood bleached sulfate pulp (SBKP) were blended to make LWC base paper, the most favorable pulp furnish was comprised of 50% optimized P-RC APMP and 50% commercial SBKP. The obtained LWC base paper handsheet had better bulk, and its other properties could also meet the require-ments of LWC base paper.

Journal articles
Magazine articles
Open Access
The Shendye-Fleming OBA Index for paper and paperboard, TAPPI Journal March 2022

ABSTRACT: We are proposing a new one-dimensional scale to calculate the effects of optical brightening agents (OBA) on the bluish appearance of paper. This index is separate from brightness and whiteness indices.In the paper industry, one-dimensional scales are widely used for determining optical properties of paper and paperboard. Whiteness, tint, brightness, yellowness, and opacity are the most common optical properties of paper and paperboard. Most of the papers have a blue cast generated by addition of OBA or blue dyes. This blue cast is given because of the human perception that bluer is whiter, up to a certain limit. To quantify this effect, it is necessary to determine how much blue cast paper and paperboard have. As the printing industry follows the ISO 3664 Standard for viewing, which has a D50 light source, this also plays a very important role in showing a blue cast. Color perception is based on light source and light reflected from an object. The ultraviolet (UV) component in D50 interacts with OBA to provide a reflection in the blue region of the visible spectrum. Use of a UV blocking filter results in measurements without the effect of emission in the blue region. This difference is used in determining the OBA effect in the visible range of the paper. This equation is known as the Shendye-Fleming OBA Index.

Journal articles
Magazine articles
Open Access
Surface energy considerations for offset printing of coated paper and paperboard, TAPPI Journal November 2023

ABSTRACT: Offset printing of coated paper involves the complex interactions of ink with a surface that is characterized by three major properties: roughness, porosity, and related pore network structure and surface chemistry (related to surface free energy [SFE]). The effects of porosity and roughness are relatively well understood and are documented in the literature, whereas the influence of surface chemistry is much less studied and therefore the focus of this paper. The key results shown include: i) Coating porosity has a negligible effect on SFE determination by contact angle using two fluids. ii) The chemistry of the latex polymer in the coating formulation dominates the influence on SFE compared to pigment, with any surface energy differences present in the pigment being almost completely masked by latex. iii) Wetting agent and corona treatment can impact water absorption rate and surface spreading of water, resulting in small differences in printability. Increasing the concentration of the surfactant on a coated surface indicates switching orientation of the surfactant molecules, giving a “step wise” printing result. When looking to improve offset printability by selection of different pigments, the variation in SFE is less important than variation in either surface roughness or porosity.

Journal articles
Magazine articles
Open Access
The Shendye-Fleming OBA Index for paper and paperboard, TAPPI Journal March 2022

ABSTRACT: We are proposing a new one-dimensional scale to calculate the effects of optical brightening agents (OBA) on the bluish appearance of paper. This index is separate from brightness and whiteness indices.In the paper industry, one-dimensional scales are widely used for determining optical properties of paper and paperboard. Whiteness, tint, brightness, yellowness, and opacity are the most common optical properties of paper and paperboard. Most of the papers have a blue cast generated by addition of OBA or blue dyes. This blue cast is given because of the human perception that bluer is whiter, up to a certain limit. To quantify this effect, it is necessary to determine how much blue cast paper and paperboard have. As the printing industry follows the ISO 3664 Standard for viewing, which has a D50 light source, this also plays a very important role in showing a blue cast. Color perception is based on light source and light reflected from an object. The ultraviolet (UV) component in D50 interacts with OBA to provide a reflection in the blue region of the visible spectrum. Use of a UV blocking filter results in measurements without the effect of emission in the blue region. This difference is used in determining the OBA effect in the visible range of the paper. This equation is known as the Shendye-Fleming OBA Index.

Journal articles
Magazine articles
Open Access
Determining operating variables that impact internal fiber bonding using Wedge statistical analysis

ABSTRACT: In this study, Wedge statistical analysis tools were used to collect, collate, clean up, plot, and analyze several years of operational data from a commercial paper machine. The z-direction tensile (ZDT) and Scott Bond tests were chosen as representative of fiber bond strength. After analyzing thousands of operational parameters, the ones with the most significant impact upon ZDT involved starch application method, starch penetration, and the amount of starch applied. Scott bond was found to be significantly impacted by formation and refining. Final calendering of the paper web has also shown an impact on internal fiber bonding.

Journal articles
Magazine articles
Open Access
Understanding wet tear strength at varying moisture content in handsheets, TAPPI Journal January 2021

ABSTRACT: A laboratory study was conducted looking at the effects of moisture content on wet tear strength in handsheets. Three different wetting techniques were used to generate the wet tear (Elmendorf-type) data at varying moisture levels, from TAPPI standard conditions (dry) to over 60% moisture content (saturated). Unbleached hardwood and softwood fiber from full-scale kraft pulp production were used. The softwood fiber was refined using a Valley beater to reduce freeness. Handsheets were made with a blend of hardwood and softwood and with refined softwood, without the addition of wet-end chemistry. The resulting grams-force tear data obtained from the test was indexed with basis weight and plotted versus both moisture content and dryness. As moisture content levels in the handsheets increased, the wet tear strength also increased, reaching a critical maximum point. This marked a transition point on the graph where, beyond a critical moisture content level, the tear strength began to decline linearly as moisture increased. This pattern was repeated in handsheets made from a blend of hardwood and softwood and from 100% refined softwood.