Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 41–50 of 45 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Edge crush testing methods and box compression modeling, TAPPI Journal August 2022

ABSTRACT: While multiple test procedures have been developed to assess the inherent compressive strength of corrugated materials (edge crush test, ECT), limited work has explored the appropriateness of each in the context of box compression modeling. This study incorporates a variety of real-world samples, highlighting the varying challenges different ECT methods face in measuring the intrinsic compressive resistance of combined corrugated board. We examine each of these methods as inputs for different types of models, as well as discuss the propagation of measurement variation through the modeling effort. By highlighting the cases in which a given ECT method no longer proves to be an optimal parameter in box compression strength modeling, we explore how we might better measure this material property.

Journal articles
Magazine articles
Open Access
Influence of pallet pattern on top-to-bottom compression performance of unitized loads, TAPPI Journal

ABSTRACT: Environmental scaling factors estimate a corrugated container’s ability to withstand various conditions it will encounter during the storage and distribution process. In this project, we examined the compressive resistance of unitized loads using differing pallet stacking patterns. To simulate real-world failure scenarios in our laboratory tests, we used two different nominal board grades of single-wall C-flute regular slotted containers loaded with a plywood panel and bagged salt to direct the failure location to the bottom of the stack. Our results showed that the columnar aligned pattern provided the greatest compressive resistance and the interlocked stacking arrangement yielded the lowest of the patterns evaluated. Based on the study results, we calculated box compression retention multipliers for each pattern and compared them to scaling factors published by the Fibre Box Association.

Journal articles
Magazine articles
Open Access
Assessing variation in package modeling, TAPPI Journal April 2021

ABSTRACT: Predictions from empirical models are affected by variability in the input parameters for the data set used to build the models. For corrugated boxes, the difference between actual and modeled compression strength creates a real cost associated with box production, often resulting in boxes that may need to be over-designed to compensate for a lack of model precision. No work to date has attempted to assess the limitation in these compression estimates due to input parameter testing variability. In this paper we approach that problem, initially for the McKee equation and then conceptually for other box models. For our industry to do a better job at meeting the needs of our corrugated packaging customers, we need to reduce the variation in the tests we all rely on, particularly for evaluating material strength (edge crush test [ECT]) and package compression performance (box compression test [BCT]).

Journal articles
Magazine articles
Open Access
Prediction of box failure from paper data for asymmetric corrugated board, TAPPI JOURNAL August 2018

Prediction of box failure from paper data for asymmetric corrugated board, TAPPI JOURNAL August 2018

Journal articles
Magazine articles
Open Access
Influence of pallet pattern on top-to-bottom compression performance of unitized loads, TAPPI Journal November 2021

ABSTRACT: Environmental scaling factors estimate a corrugated container’s ability to withstand various conditions it will encounter during the storage and distribution process. In this project, we examined the compressive resistance of unitized loads using differing pallet stacking patterns. To simulate real-world failure scenarios in our laboratory tests, we used two different nominal board grades of single-wall C-flute regular slotted containers loaded with a plywood panel and bagged salt to direct the failure location to the bottom of the stack. Our results showed that the columnar aligned pattern provided the greatest compressive resistance and the interlocked stacking arrangement yielded the lowest of the patterns evaluated. Based on the study results, we calculated box compression retention multipliers for each pattern and compared them to scaling factors published by the Fibre Box Association.