Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 5,031–5,040 of 5,117 results (Duration : 0.017 seconds)
Journal articles
Magazine articles
Open Access
Investigation of the influencing factors in odor emission from wet-end white water, TAPPI Journal October 2020

ABSTRACT: Emission of malodorous gases, such as volatile organic compounds (VOCs), hydrogen sulfide (H2S), and ammonia (NH3) during pulping and papermaking has caused certain harm to the air environment and human health. This paper investigated the influencing factors of odor emission from wet-end white water during the production of bobbin paper in a papermaking mill using old corrugated containers (OCC) as raw material. The concentration of malodorous gases emitted from wet-end white water was determined with pump-suction gas detectors. The results indicated that low temperature could limit the release of malodorous gases from white water. Specifically, no total volatile organic compounds (TVOC), H2S, and NH3 was detected at a temperature of 15°C. The concentrations of malodorous gases were slightly increased when temperature increased to 25°C. When temperature was 55°C, the released concentrations of TVOC, H2S, and NH3 were 22.3 mg/m3, 5.91 mg/m3, and 2.78 mg/m3, respectively. Therefore, the content of malodorous gases significantly increased with the temperature increase. The stirring of white water accelerated the release of malodorous gases, and the release rate sped up as the stirring speed increased. However, the total amount of malodorous gases released were basically the same as the static state. Furthermore, the higher the concentration of white water, the greater the amount of malodorous gases released. The pH had little influence on the TVOC release, whereas it significantly affected the release of H2S and NH3. With the increase of pH value, the released amount of H2S and NH3 gradually decreased. When pH reached 9.0, the release amount of H2S and NH3 was almost zero, proving that an alkaline condition inhibits the release of H2S and NH3.

Journal articles
Magazine articles
Open Access
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021

ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.

Journal articles
Magazine articles
Open Access
Modeling and parameter optimization of the papermaking processes by using regression tree model and full factorial design, TAPPI Journal February 2021

ABSTRACT: One of the major challenges in the pulp and paper industry is taking advantage of the large amount of data generated through its processes in order to develop models for optimization purposes, mainly in the papermaking, where the current practice for solving optimization problems is the error-proofing method. First, the multiple linear regression technique is applied to find the variables that affect the output pressure controlling the gap of the paper sheet between the rod sizer and spooner sections, which is the main cause of paper breaks. As a measure to determine the predictive capacity of the adjusted model, the coefficient of determination (R2) and s values for the output pressure were considered, while the variance inflation factor was used to identify and eliminate the collinearity problem. Considering the same amount of data available by using machine learning, the regression tree was the best model based on the root mean square error (RSME) and R2. To find the optimal operating conditions using the regression tree model as source of output pressure measurement, a full factorial design was developed. Using an alpha level of 5%, findings show that linear regression and the regression tree model found only four independent variables as significant; thus, the regression tree model demonstrated a clear advantage over the linear regression model alone by improving operating conditions and demonstrating less variability in output pressure. Furthermore, in the present work, it was demonstrated that the adjusted models with good predictive capacity can be used to design noninvasive experiments and obtain.

Journal articles
Magazine articles
Open Access
Modeling the influence of rheology on smooth rod coating systems, TAPPI Journal November 2022

ABSTRACT: Rod coating methods are of interest for the application of barrier coatings, especially at off-line facilities that may run at moderate speeds and narrow web widths. At lower line speeds and lower coating solids, it is difficult to achieve good coat weight control because of poor loading of the rod. While there is extensive literature available about blade and roll coating, there seems to be less reported on the rod loading of smooth rods to obtain various coat weights. Much of the work is around metering rods working on applicator rolls at high speeds that are associated with the metered size press, with a focus on ribbing instabilities. This work employs a simplified model, neglecting some complex features of rubber deformation and film split, to estimate the influence of the process parameters such as speed, rod diameter, viscosity, and rod loading on the coat weight obtained. As found in practice, at low speed and low viscosities, the coat weight-load curve is steep, leading to poor control of the coat weight and coat weight uniformity. If the viscosity is increased, the curve is modified, and control is possible with rod loading in a normal range. For shear thinning fluids described by the Carreau model, the power law index and other parameters need to be in the correct range to obtain the desired effect. Modeling predictions show a steeper dependence of coat weight with rod pressure when compared to pilot coater data. This may be caused by missing details in the mechanical loading of the rod related to tube pressure or from neglecting the impact of filter cake formation of the applied coating in the model.

Journal articles
Magazine articles
Open Access
Black liquor evaporator upgrades— life cycle cost analysis, TAPPI Journal March 2021

ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. Evaporator steam economy is defined as the unit mass of steam required to evaporate a unit mass of water from black liquor (i.e., lb/lb or kg/kg.) The economy is determined by the number of effects in an evaporator train and the system configuration. Older systems use four to six effects, most of which are the long tube vertical rising film type. Newer systems may be designed with seven or even eight effects using falling film and forced circulation crystallization technology for high product solids. The median age of all North American evaporator systems is 44 years. Roughly 25% of the current North American operating systems are 54 years or older. Older systems require more periodic maintenance and have a higher risk of unplanned downtime. Also, older systems have chronic issues with persistent liquor and vapor leaks, shell wall thinning, corrosion, and plugged tubes. Often these issues worsen to the point of requiring rebuild or replacement. When considering the age, technology, and lower efficiency of older systems, a major rebuild or new system may be warranted. The intent of this paper is to review the current state of black liquor evaporator systems in North America and present a basic method for determining whether a major rebuild or new installation is warrant-ed using total life cycle cost analysis (LCCA).

Journal articles
Magazine articles
Open Access
Temperature profile measurement applications of moving webs and roll structures with intelligent roll embedded sensor technology, TAPPI Journal November 2021

ABSTRACT: An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.

Journal articles
Magazine articles
Open Access
Preparing prehydrolyzed kraft dissolving pulp via phosphotungstic acid prehydrolysis from grape branches, TAPPI Journal January 2022

ABSTRACT: Dissolving pulp was successful prepared via phosphotungstic acid (PTA) prehydrolysis kraft (PHK) cooking followed by an elementary chlorine-free (ECF) bleaching process from grape branches. The effects of prehydrolysis temperature, reaction time, and PTA concentration that potentially affect the quality of dissolving pulp product on chemical components of pulp were studied via an orthogonal experiment. The structure of lignin was activated during the PTA prehydrolysis phase, and lignin was easily removed during the following cooking process. Thus, relatively mild conditions (140°C, 100 min) can be used in the cooking process. During the prehydrolysis phase, temperature exhibited the most significant influence on the cellulose purity of the obtained pulp fiber, followed by reaction time and PTA concentration. The optimized prehydrolysis conditions were as follows: prehydrolysis temperature, 145°C; reaction time, 75 min; and PTA concentration, 1 wt%. Whether the excessively high prehydrolysis temperature or prolonging the reaction time did not favor the retention of long chain cellulose, the delignification selectivity for the cooking process could not be further improved by excessive PTA loading. Under these prehydrolysis conditions, 94.1% and 29.0% for a-cellulose content and total yield could be achieved after the given cooking and bleaching conditions, respectively. Moreover, the chemical structure and crystal form of cellulose were scarcely changed after PTA prehydrolysis, which could be confirmed by results from Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). PTA prehydrolysis could be considered as an alternative method for preparing PHK dissolving pulp under relatively mild cooking conditions.

Journal articles
Magazine articles
Open Access
Development of paper quality parameter measurement in China, TAPPI Journal May 2022

ABSTRACT: Paper quality parameters are important indicators of paper production, such as paper moisture, basis weight, ash content, strength, and so on. This study focuses on the online measurement methods and development of paper basis weight, moisture, and ash measuring. First, the measurable paper parameters and quality control system products in China are analyzed. Then, the basis weight measurement methods, accuracy, and development are given in the range of 10~1000 g/m2. Third, the distinction between infrared and microwave methods for moisture measurement is discussed. Finally, the ash measurement is introduced. Production and consumption of tissue paper in China have continually increased during the past decade. Near-infrared light technology is mature for the measurement of paper parameters in the range of 10~200 g/m2 basis weight. However, the near-infrared online measurement of tissue paper is not widely used, and few tissue paper lines are equipped with this type of quality control system in China. Therefore, technology for near-infrared measurement of basis weight has a great potential market in the field of tissue paper production. This article analyzes the future development trend of near-infrared light in tissue paper basis weight measurement and summarizes the difficulties in near-infrared light measurement of tissue paper basis weight.

Open Access
Black liquor evaporators upgrade — How many effects?, TAPPI Journal April 2023

ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. When considering an evaporator rebuild or a new system, the key design question is how many effects to include in the system. The number of effects is the main design feature that deter-mines the economy of the system and the steam usage for a given evaporation capacity. A higher number of effects increases steam economy and reduces energy cost to a point, but additional effects also have higher initial capital cost and increased power costs. This research paper uses life-cycle cost analysis (LCCA) as a method to determine the optimum number of evaporator effects for a new evaporator system. The same basic principles and method can also apply to existing evaporator rebuild projects.