Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 5,061–5,070 of 5,130 results (Duration : 0.016 seconds)
Journal articles
Open Access
An elliptical pore model for the mechanical properties of pa

An elliptical pore model for the mechanical properties of paper, TAPPI JOURNAL August 2015

Journal articles
Open Access
Fast evaluation of spatial coating layer formation using ultraviolet scanner imaging

Fast evaluation of spatial coating layer formation using ultraviolet scanner imaging

Journal articles
Magazine articles
Open Access
Editorial: Professional Networking in the Nonwovens and Technical Textiles Sector

Editorial: Professional Networking in the Nonwovens and Technical Textiles Sector

Open Access
Cross-flow separation characteristics and piloting of graphene oxide nanofiltration membrane sheets and tubes for kraft black liquor concentration, TAPPI Journal September 2023

ABSTRACT: Dewatering of weak black liquor (WBL) in the kraft cycle by evaporation is highly energy intensive. Membranes are an attractive alternative for energy-efficient dewatering, but existing commercial polymeric or ceramic membranes are either degraded in BL or have high capital costs. Our recent works have demonstrated the engineering of graphene oxide (GO) nanofiltration membranes, their stability and promising performance in BL conditions, and preliminary scale-up into sheets and tubes. Here, we describe in detail the separation characteristics of GO membrane sheets and tubes under real BL conditions and crossflow operation. Recycle-mode piloting of a GO tubular membrane showed average “production flux” of 16 L/m2/h (LMH) and high rejections of lignin (98.3%), total solids (66%), and total organic carbon (83%), with no signs of irreversible fouling identified. A corresponding GO sheet membrane produced an average flux of ~25 LMH and maintained high lignin rejection of ~97% during a slipstream pilot at a kraft mill site using WBL with ~16 wt% total solids (TS). Finally, we piloted a Dow/DuPont XUS1808 polyamide composite reverse osmosis (RO) membrane for last-mile processing of the GO nanofiltration membrane permeate. The RO membrane showed a steady state flux of 19 LMH at 65 bar and produced ~0.02 wt% TS water product, which is highly suitable for reuse in pulp washing operations in the kraft process. The results have strong positive implications for the industrial application of GO membranes in BL concentration and other related applications.

Open Access
Pilot scale black liquor concentration using pressure driven membrane separation, TAPPI Journal April 2023

ABSTRACT: Black liquor concentration using pressure driven membrane separation has long been proposed as a means of achieving energy savings and breaking production bottlenecks. To date, limitations in membrane performance and stability under black liquor process conditions have prevented those promises from being realized out-side of tightly controlled laboratory settings. In this work, we describe the first successful pilot scale field deployments of a membrane system for black liquor concentration. Using a purpose-built system and commercial sized, spiral wound graphene oxide membrane elements, we have logged nearly 6000 h of runtime across deployments to multiple mill sites. We demonstrate concentration of black liquor from 14% to >20% total solids, while generating permeate water comparable in quality to that of evaporator condensate and an 81% reduction in energy consumption relative to evaporation. At a commercial scale, these results translate to $2 M/year in net energy savings for a typical mill, as well as an opportunity to support production increases or mill expansions. These results represent a significant leap forward in the ability of membrane systems to deliver substantial value via black liquor concentration.

Open Access
Rewet suppression through press felt engineering, TAPPI Journal June 2022

ABSTRACT: Due to the immense energy and associated financial cost of drying paper, achieving a drier web entering the dryers is a key objective in paper manufacture. One major research thrust has been finding a way to increase press solids by mitigating or eliminating rewet in the press section. For decades, solutions to this problem have remained elusive. In this work, we develop a novel approach that significantly reduces rewet by rupturing the liquid channels between felt and web. We illustrate the effects that altering the mechanical and surface properties of the press felt matrix have on the stability of these liquid channels. In a laboratory-scale platen press, a 40% reduction in the residual water of 120 g/m2 southern bleached softwood kraft (SBSK) pulp handsheets after pressing was observed, corresponding to an increase in press solids from 48% to 61%. For reference, pressing under identical conditions with paper blotters, in which minimal rewet is presumed to occur, resulted in 64% solids. Furthermore, we observed enhanced dewatering across a range of basis weights, applied pressures, and felt types. In addition to measuring the solids content of pressed sheets, we capture and analyze video evidence of the mechanisms at play in our improved dewatering technology.

Journal articles
Magazine articles
Open Access
Web lateral instability caused by nonuniform paper properties, TAPPI Journal January 2022

ABSTRACT: Lateral or cross-machine direction (CD) web movement in printing or converting can cause problems such as misregistration, wrinkles, breaks, and folder issues. The role of paper properties in this problem was studied by measuring lateral web positions on commercial printing presses and on a pilot-scale roll testing facility (RTF). The findings clearly showed that CD profiles of machine direction (MD) tension were a key factor in web stability. Uneven tension profiles cause the web to move towards the low-tension side. Although extremely nonuniform tension profiles are visible as bagginess, more often, tension profiles must be detected by precision devices such as the RTF. Once detected, the profiles may be analyzed to determine the cause of web offset and weaving problems.Causes of tension profiles can originate from nonuniform paper properties. For example, by means of case studies, we show that an uneven moisture profile entering the dryer section can lead to a nonuniform tension profile and lateral web movement. Time-varying changes in basis weight or stiffness may also lead to oscillations in the web’s lateral position. These problems were corrected by identifying the root cause and making appropriate changes. In addition, we developed a mathematical model of lateral stability that explains the underlying mechanisms and can be used to understand and correct causes of lateral web instability.

Journal articles
Magazine articles
Open Access
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021

ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.

Journal articles
Magazine articles
Open Access
Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018

Online measurement of bulk, tensile, brightness, and ovendry content of bleached chemithermomechanical pulp using visible and near infrared spectroscopy, TAPPI JOURNAL April 2018

Journal articles
Magazine articles
Open Access
Novel test method for measuring defects in barrier coatings, TAPPI Journal November 2022

ABSTRACT: In the last several years, activity to develop water-based barrier coatings (WBBCs) that meet challenging packaging performance requirements has increased dramatically. Cellulose-based packaging solutions can provide a more sustainable packaging option for replacing single-use plastic-based options like extrusion-based and laminated materials. An advantage of WBBCs is the opportunity to reduce the coating thickness applied, as long as the barrier requirements can be met. A challenge that must be overcome is the ability to maintain a defect and pin-hole-free coating layer after coating and drying to retain the barrier performance. Many formulation and coating parameters can affect the barrier coating layer quality; however, methods for detecting more subtle differences in these types of studies are not widely available. Work was carried out to develop a quantitative technique for detecting and measuring the quantity and size of defects in the barrier coating layer. A test method has been developed using a combination of dyed oil and image analysis to be able to characterize the imperfections in the coating surface. The use of dyed oil serves two purposes. First, it better simulates the types of materials, in this case, oils and grease, for which the barrier coating is expected to hold out. Second, it also provides contrast between the coating and failure points for testing. An image analysis technique is employed to characterize the number and size of the imperfections. For the former, it reduces the testing time required if a quality control or laboratory technician counts the dots. For the latter, it assists with judgment on the source of the root cause of the imperfection, such as base sheet defects, coating dispersion issues, or perhaps micro-blisters in the coating, as some examples.To show the benefit of this technique, several pilot coating studies were designed to see if the new technique could be utilized to detect differences in WBBC performance. Both process and chemical variables were evaluated. With refinement, it is believed this technique can be utilized in development work, as well as for a potential quality control technique for manufacturing of coated paper and paperboard products.