Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 51–60 of 155 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Soybean peroxidase treatment of ultra-high kappa softwood pulp to enhance yield and physical properties, TAPPI Journal September 2020

ABSTRACT: The working hypothesis serving as basis for this study is that pulping to a higher kappa number will produce a higher yield pulp, and then treating that pulp with a surface reactive lignin peroxidase to ablate surface lignin will increase specific bonding area. In the present case, the working hypothesis was modified so that soybean peroxidase (SBP) works like lignin peroxidase to modify surface lignin on high-kappa, high-yield softwood pulps to facilitate enhanced fiber-to-fiber bonding such that the resulting paper strength is similar to the lower kappa soft-wood pulp generally used to make linerboard. Soybean peroxidase is actually a plant peroxidase that exhibits lignin peroxidase-like activity. It is not a lignin peroxidase derived from white rot fungus. The current work did show a significant improvement in pulp yield (62.2% vs. 55.2% yield for a 103-kappa control linerboard grade sheet), while treatment with SBP showed that tensile, burst, and STFI properties of the pulp were improved, although more convincing data needs to be obtained.

Journal articles
Magazine articles
Open Access
Causes of poor dregs settling in a green liquor clarifier, TAPPI Journal August 2022

ABSTRACT: A study was conducted to examine the most likely parameters responsible for poor dregs settling at a kraft mill over a 2.5-year period, using multivariate data analysis (MVDA) and machine learning (ML) techniques. The dregs settling behavior seems to be seasonally influenced, implying that wood quality variation can be a factor. The results from the MVDA/ML analysis show that poor dregs settling is correlated to incomplete combustion and/or low load conditions in the recovery boiler, low sulfidity in the causticizing plant, and high flow in the green liquor•weak wash cycle. Compositions of dregs and black liquor were also examined to identify correlations with impaired dregs settling. The results show that poor dregs settling strongly correlates with high silicon (Si) content in dregs and moderately correlates with high iron (Fe) and high aluminum (Al) contents, and with low bulk density in dregs. For mills that experience dregs settling or green liquor filtering issues, regular compositional analyses of dregs, green liquor, weak wash, and black liquor are recommended in order to monitor the dynamics of silicon and other constituents in the recovery cycle.

Journal articles
Magazine articles
Open Access
Dissolution of wood components during hot water extraction of spruce, TAPPI Journal May 2023

ABSTRACT: The purpose of this study was to investigate the autohydrolysis of softwood, which is the main chemical operation in both hot water extraction and steam explosion. Control of the process and monitoring its course were ensured by the careful choice of experimental setup and conditions: a milled spruce material was extracted in a small flow-through reactor to minimize degradation of the dissolved material and to enable analysis of the resulting liquors extracted at selected time points. The obtained liquid and solid fractions were analyzed for sugar composition and acetic acid concentration. The results showed that partially degraded hemicelluloses were extracted; hemicelluloses side chains were cleaved off and detected as monomers, while deacetylation was limited. Chain scissions of cellulose were observed as a result of autohydrolysis.

Journal articles
Magazine articles
Open Access
Critical parameters for tall oil separation I: The importance of ration of fatty acids to rosin acids, TAPPI Journal September 2019

ABSTRACT: Tall oil is a valuable byproduct in chemical pulping of wood, and its fractions have a large spectrum of applications as chemical precursors, detergents, and fuel. High recovery of tall oil is important for the economic and environmental profile of chemical pulp mills. The purpose of this study was to investigate critical parameters of tall oil separation from black liquor. To investigate this in a controlled way, we developed a model test system using a “synthetic” black liquor (active cooking chemicals OH- and HS- ions), a complete process for soap skimming, and determination of recovered tall oil based on solvent extraction and colorimetric analysis, with good reproducibility. We used the developed system to study the effect of the ratio of fatty acids to rosin acids on tall oil separation. When high amounts of rosin acids were present, tall oil recovery was low, while high content of fatty acids above 60% significantly promoted tall oil separation. Therefore, manipulating the content of fatty acids in black liquor before the soap skimming step can significantly affect the tall oil solubility, and hence its separation. The findings open up chemical ways to improve the tall oil yield.

Journal articles
Magazine articles
Open Access
Evaluation of rice straw for purification of lovastatin, TAPPI Journal November 2021

ABSTRACT: Cholesterol synthesis in the human body can be catalyzed by the coenzyme HMG-CoA reductase, and lovastatin, a key enzyme inhibitor, can reduce hypercholesterolemia. Lovastatin can be obtained as a secondary metabolite of Aspergillus terreus ATCC 20542. In this study, rice straw of lignocellulose was used in aeration and agitation bath fermentation in a 1-L flask, and a maximal crude extraction rate of 473 mg/L lovastatin was obtained. The crude extract was treated with silica gel (230–400 mesh) column chromatography. Ethyl acetate/ethanol (95%) was used as the mobile phase, and isolation was performed through elution with various ethyl acetate/ethanol ratios. The highest production rate of 153 mg/L was achieved with ethyl acetate/ethanol in a ratio of 8:2. The lovastatin gained from the crude extract was added to 12 fractions treated with 0.001 N alkali, and acetone was then added. After 24 h of recrystallization at 4°C, the extract underwent high-performance liquid chromatography. The purity had increased from 25% to 84.6%, and the recovery rate was 65.2%.

Journal articles
Magazine articles
Open Access
Editorial: TAPPI Journal Best Research Paper for 2023 focuses on black liquor concentration using graphene oxide membranes, TAPPI Journal February 2024

ABSTRACT: TAPPI and the TAPPI Journal (TJ) Editorial Board would like congratulate the authors of the 2023 TAPPI Journal Best Research Paper Award and Honghi Tran Prize: Sam Rae, Ella V. Richards, Max Kleiman-Lynch, Brent D. Keller, and Brandon I. Macdonald. Their paper, “Pilot scale black liquor concentration using pressure driven membrane separation,” appeared on p. 223 of the April 2023 issue. This kraft recovery cycle research was recognized by the TAPPI Journal Editorial Board for its innovation, creativity, scientific merit, and clear expression of ideas.

Journal articles
Magazine articles
Open Access
Effects of varying total titratable alkali and causticizing efficiency targets on kraft pulp mill productivity, TAPPI Journal March 2024

ABSTRACT: The kraft mill causticizing area is often overlooked and undervalued when it comes to mill optimization; however, the operation of the causticizing plant has downstream effects on the entire liquor cycle. Setting the right targets for the causticizing plant can have a tremendous effect on mill operating costs, as well as push the production bottleneck from one unit operation to another. The key performance parameters associated with the causticizing plant itself are liquor total titratable alkali (TTA) and causticizing efficiency. Individual facilities choose their TTA and causticizing efficiency targets based on their goals, the limits of their equipment, and past experiences. This gives a variety of operating strategies in practice, but what are the implications for optimizing total titratable alkali and causticizing efficiency, and what level of optimization can be achieved through implementation of modern technology? This paper reviews the results of several different operational strategies and models the effects of these different approaches on kraft mill liquor cycle.

Journal articles
Magazine articles
Open Access
How do mud balls form in lime kilns?, TAPPI Journal April 2023

ABSTRACT: Mud ball formation in lime kilns has been a persistent problem in many kraft mills, particularly for older kilns that are equipped with chains. A systematic laboratory study was conducted to examine how mud balls are formed and the key factors that affect ball formation. The results confirm the general mill experience that high moisture and high sodium contents in lime mud are the main contributing factors to ball formation. The high moisture content allows lime mud to agglomerate and grow to form balls, while the high sodium content helps make the balls hard and retain their shape. A ball formation mechanism is proposed to explain how mud balls form and grow near the kiln feed end.

Journal articles
Magazine articles
Open Access
Repulping of wet strength paper towel with potassium monopersulfate, TAPPI Journal September 2020

ABSTRACT: Potassium monopersulfate (KMPS) was used in repulping of polyamide-epichlorohydrin (PAE)-containing paper towel. The effectiveness of the repulping aid was compared with that of sodium hypochlorite. Addition of a 2.4% KMPS repulping aid achieved complete repulping of the paper towel, resulting in 88% screen yield and about 5% rejects. To reach a similar pulping result, two times the oxidative equivalent amount of sodium hypochlorite had to be used. Compared to the pulp fibers obtained from sodium hypochlorite repulping, those obtained from KMPS repulping had higher physical strength, longer fiber length, and lower fines content. This study demonstrated that KMPS was superior to sodium hypochlorite in repulping of PAE-containing paper towel in terms of effectiveness and pulp quality.

Journal articles
Magazine articles
Open Access
Fate of phosphorus in the recovery cycle of the kraft pulping process, TAPPI Journal March 2020

ABSTRACT: The accumulation of nonprocess elements in the recovery cycle is a common problem for kraft pulp mills trying to reduce their water closure or to utilize biofuels in their lime kiln. Nonprocess elements such as magnesium (Mg), manganese (Mn), silicon (Si), aluminum (Al), and phosphorus (P) enter the recovery cycle via wood, make-up chemicals, lime rock, biofuels, and process water. The main purge point for these elements is green liquor dregs and lime mud. If not purged, these elements can cause operational problems for the mill. Phosphorus reacts with calcium oxide (CaO) in the lime during slaking; as a result, part of the lime is unavailable for slaking reactions. The first part of this project, through laboratory work, identified rhenanite (NaCa(PO4)) as the form of P in the lime cycle and showed the negative effect of P on the availability of the lime. The second part of this project involved field studies and performing a mass balance for P at a Canadian kraft pulp mill.