Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 51–60 of 141 results (Duration : 0.015 seconds)
Journal articles
Magazine articles
Open Access
A case study review of wood ash land application programs in North America, TAPPI Journal February 2021

ABSTRACT: Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash.Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.

Journal articles
Magazine articles
Open Access
Gas dispersion in the oxygen delignification process, TAPPI Journal May 2021

ABSTRACT: There has been very little knowledge about the state of gas dispersion in the oxygen delignification process, even though this has a major impact on the performance of the reactor. This paper presents a new continu-ous inline method for measuring oxygen bubble size distribution in the reactor, as well as results from studies con-ducted in softwood and hardwood lines. This new measurement worked well, and new information about oxygen bubble size, as well as how different reactor conditions affected the distribution, was obtained. For example:œ In the softwood line, the mean volume-weighted bubble size was about 0.1 mm, whereas in the hardwood line, this size was almost 10 times higher. For both lines, there was considerable variation in the measured bubble size over the long term.œ For both lines, an increase in mixer rotation speed caused a discernible decrease in the bubble size, and an increase in oxygen charge caused a discernible increase in the bubble size.œ In the softwood line, no coalescence of the bubbles in the reactor was observed, but in the hardwood line, some coalescence of the larger bubbles occurred.œ In the test conducted in the hardwood line, the use of brownstock washer defoamer caused a discernible increase in oxygen bubble size.œ In the hardwood line, reactor pressure had a noticeable effect on the amount of delignification, which indicated that improving mass transfer of oxygen (e.g., by decreasing the oxygen bubble size, in this case) should also have an increasing effect on the delignification.

Journal articles
Magazine articles
Open Access
The role of gas dispersion in the oxygen delignification process, TAPPI Journal May 2021

ABSTRACT: Oxygen delignification is an essential part of the pulp production process. Delignification occurs with the aid of alkali and dissolved oxygen. Dissolved oxygen is obtained by dispersing oxygen gas into the pulp suspension by using efficient mixers. Little is known about the state of oxygen gas dispersion and its effect on oxygen delignification kinetics and efficiency. This paper will present the results for the effect of gas bubble size on the performance of oxygen delignification. The results are mainly based on detailed studies made in a Finnish hardwood mill where the oxygen bubble size distribution could be altered at the feed of the reactor. An essential aspect of these studies was the use of a new continuous inline gas bubble size measurement system to simultaneously determine the bubble size distribution at the feed and top of the reactor. Information about oxygen consumption in the reactor could also be obtained through the bubble size measurements. Accordingly, these studies quantify the effect of oxygen bubble size on the kappa reduction of the pulp. The effect of different chemical factors on the oxygen bubble size is also studied.Finally, the relationship between the gas bubble size and the liquid phase oxygen mass transfer coefficient (kLa) is presented. This connects the bubble size to the kappa reduction rate. Based on the presented modeling approach and the evaluation of practical factors that are not taken into account in the modeling, it was concluded that the volumetric average oxygen bubble size should preferably be smaller than 0.2 mm in practice.The information obtained with the new gas bubble size measurement system and the presented modeling approach give a very new basis for understanding, monitoring, adjusting, and designing oxygen delignification processes.

Journal articles
Magazine articles
Open Access
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019

ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.

Journal articles
Magazine articles
Open Access
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021

ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.

Journal articles
Magazine articles
Open Access
Tetraethyl orthosilicate-containing dispersion coating — water vapor and liquid water barrier properties, TAPPI Journal September 2021

ABSTRACT: An aqueous styrene-butadiene latex dispersion coating containing in-situ processed tetraethyl orthosilicate (TEOS) applied on paperboard demonstrated improved water barrier performance. Coatings containing TEOS equivalent to 0.8% silicon dioxide (SiO2; dry basis) exhibited water vapor performance of < 25 g/m2/day (23°C, 50% relative humidity [RH]) and liquid water barrier performance Cobb 1800 s of < 6 g/m2, when applied as a single-layer 18 g/m2 coating. Cobb 1800 s barrier performance was still good (< 11 g/m2) at coat weights of 7–10 g/m2. The use of filler materials such as kaolin improved the vapor barrier properties of the coating, but this was not critical to the liquid water barrier properties.

Journal articles
Magazine articles
Open Access
The solubility of calcium carbonate in green liquor handling systems, TAPPI Journal October 2019

ABSTRACT: The formation of hard calcite (CaCO3) scale in green liquor handling systems is a persistent problem in many kraft pulp mills. CaCO3 precipitates when its concentration in the green liquor exceeds its solubility. While the solubility of CaCO3 in water is well known, it is not so in the highly alkaline green liquor environment. A systematic study was conducted to determine the solubility of CaCO3 in green liquor as a function of temperature, total titratable alkali (TTA), causticity, and sulfidity. The results show that the solubility increases with increased temperature, increased TTA, decreased causticity, and decreased sulfidity. The new solubility data was incorporated into OLI (a thermodynamic simulation program for aqueous salt systems) to generate a series of CaCO3 solubility curves for various green liquor conditions. The results help explain how calcite scale forms in green liquor handling systems.

Journal articles
Magazine articles
Open Access
Continuous tannin extraction by use of screw reactor, TAPPI Journal February 2021

ABSTRACT: A pilot-size screw reactor (extraction unit) was used for tannin extraction of spruce. Yield of the same magnitude or better was obtained when comparing a screw reactor with batch reactors. A longer presoaking time in water seemed to be better than a short one for obtaining higher yield. A higher yield is obtained with lower dry-water ratio, which suggests that the internal diffusion in bark does not determine mass transfer as much as is the case without presoaking of bark. The higher dry-water ratio decreased the yield. The prior soaking of the bark also minimized the mechanical reactor feeding problems (clogging). The benefits of a screw reactor likely are that run time changes for different process conditions are flexible; it simplifies design and construction of an industrial unit for tannin production; and it saves space because of the need for fewer and smaller intermediate storage tanks.

Journal articles
Magazine articles
Open Access
Case study: Paper mill power plant optimization—balancing steam venting with mill demand, TAPPI Journal June 2020

ABSTRACT: Most Power departments are tasked with generating steam to support mill wide operations, generate electricity, and reduce operating costs. To accomplish these tasks, power boilers generate high pressure steam that is reduced to intermediate and low pressures for process utilization in the mill by means of steam turbine generator extraction or pressure reducing valves. The most economical method to reduce steam pressure is the use of steam turbine generators, as electricity is generated from the steam when it is reduced in pressure. Electricity that is produced by these generators provides a substantial financial benefit and helps offset overall operational costs. To achieve tangible financial gains, the mill must evaluate the overall cost of steam production and the price of electricity.The current work provides a case study of power plant optimization that evaluated electricity production and steam production costs balanced with mill steam demand. Process and cost optimization led to a significant reduc-tion in low pressure steam venting, resulting in reduced fuel consumption and reduced operating cost.

Journal articles
Magazine articles
Open Access
New learnings and strategies for meeting future recovery boiler particulate emission limits with existing electrostatic precipitators, TAPPI Journal June 2021

ABSTRACT: It is foreseeable that recovery boiler particulate emission limits in the United States and Canada will continue to get more stringent with time. Because of this, continued improvement of emission control equipment, as well as a better understanding of how operating parameters affect performance, are necessary. Although electrostatic precipitators (ESPs) are often viewed as a mature technology, many improvements in ESP technology continue to be developed. In recent years, academic efforts have improved the understanding of recovery boiler operating conditions on ESP performance. Additionally, advancements in materials, power supplies, and design continue to improve the efficiency and reliability of ESPs.This paper discusses how recovery boiler and electrostatic precipitator (ESP) operating factors affect ESP perfor-mance based on process simulations and practical experience, and how these learnings can be implemented to improve future operation of existing ESPs.