Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 71–80 of 143 results (Duration : 0.066 seconds)
Journal articles
Magazine articles
Open Access
Utilization of kraft pulp mill residuals, TAPPI Journal February 2022

ABSTRACT: Kraft pulp mills produce on average about 100 kg of solid residuals per metric ton of pulp produced. The main types of mill waste are sludge from wastewater treatment plants, ash from hog fuel boilers, dregs, grits, and lime mud from causticizing plants and lime dust from lime kilns. Of these, about half is disposed of in landfills, which highlights the need and potential for waste recycling and utilization. Sludge is either incinerated in hog fuel boilers to generate steam and power or used in various forms of land application, including land spreading, composting, or as an additive for landfill or mine waste covers. The majority of hog fuel boiler ash and causticizing plant residues is landfilled. Alkaline residuals can be conditioned for use in land application, manufacture of construction materials, and production of aggregates for road work. This technical review summarizes residuals utilization methods that have been applied in pulp and paper mills at demonstration- or full-scale, and therefore may act as a guide for mill managers and operators whose goal is to diminish the costs and the environmental impact of waste management.

Journal articles
Magazine articles
Open Access
Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants, TAPPI Journal November 2018

Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants, TAPPI Journal November 2018

Journal articles
Magazine articles
Open Access
Exergy and sensibility analysis of each individual effect in a kraft multiple effect evaporator, TAPPI Journal October 2019

ABSTRACT: The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.

Journal articles
Magazine articles
Open Access
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020

ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.

Journal articles
Magazine articles
Open Access
Quantification of hardwood black liquor contamination in pine black liquor, TAPPI Journal February 2024

ABSTRACT: The presence of hardwood black liquor contamination in pine black liquor can negatively impact brownstock washer and evaporator operation, as well as reduce soap separation and yield. It is also believed to negatively impact commercial kraft lignin production. It was desired to develop a method of quantitatively determining the amount of low-level hardwood liquor contamination in pine black liquor. A method employing pyrolysis-gas chromatography mass spectrometry (py-GCMS) was developed to perform the desired measurement. Laboratory cooks with carefully controlled blends of pine and hardwood chips were prepared, and the resulting liquor was measured using this technique. Additionally, samples of pine and hardwood black liquors were blended in known quantities and analyzed. All these samples were submitted as blind samples. The resulting analysis suggests the py-GCMS method was able to accurately determine the level of hardwood contamination between 1% to 10% hardwood liquor using a low-level calibration curve prepared with coniferyl alcohol and sinapyl alcohol as standards.

Journal articles
Magazine articles
Open Access
Quantification of hardwood black liquor contamination in pine black liquor, TAPPI Journal February 2024

ABSTRACT: The presence of hardwood black liquor contamination in pine black liquor can negatively impact brownstock washer and evaporator operation, as well as reduce soap separation and yield. It is also believed to negatively impact commercial kraft lignin production. It was desired to develop a method of quantitatively determining the amount of low-level hardwood liquor contamination in pine black liquor. A method employing pyrolysis-gas chromatography mass spectrometry (py-GCMS) was developed to perform the desired measurement. Laboratory cooks with carefully controlled blends of pine and hardwood chips were prepared, and the resulting liquor was measured using this technique. Additionally, samples of pine and hardwood black liquors were blended in known quantities and analyzed. All these samples were submitted as blind samples. The resulting analysis suggests the py-GCMS method was able to accurately determine the level of hardwood contamination between 1% to 10% hardwood liquor using a low-level calibration curve prepared with coniferyl alcohol and sinapyl alcohol as standards.

Journal articles
Magazine articles
Open Access
Editorial: Special issues in March and May TAPPI Journal focus on the latest pulp manufacture and engineering research, TAPPI Journal March 2024

ABSTRACT: This issue, organized by Editor-in-Chief Peter Hart, features content from the 2023 PEERS/IBBC Conference that has been peer reviewed for publication in TAPPI Journal. The papers encompass a range of topics:œ Two papers, from researchers Suarez et al. at WestRock, examine pulp from nonwoods like wheat straw and sugar-cane bagasse using a holistic life cycle analysis approach to project environmental performance in packaging products. The results can help mills make decisions about which fibers ensure a low carbon footprint.

Journal articles
Magazine articles
Open Access
Evaluating the effect of recovery boiler operation on green liquor dregs concentration using multivariate analysis, TAPPI Journal June 2023

ABSTRACT: Poor settling and filterability of green liquor dregs has been a persistent problem in many kraft pulp mills. While the concentration and settling/filtering behaviors of dregs are expected to be related to how black liquor is burned in recovery boilers, the effect of boiler operation is not well understood. A systematic study was conducted to examine how recovery boiler operation may affect the dregs concentration in the raw green liquor (RGL) at three kraft pulp mills using SIMCA, a multivariate data analysis (MVDA) program. Daily average boiler operating data from three kraft mills were analyzed over a 3-year period. Results of both principal component analysis (PCA) and partial least squares regression (PLS) suggest that the main boiler operations contributing to high dregs concentrations in RGL are low liquor firing load, low bed temperature, poor char burning, and unstable char bed.

Journal articles
Magazine articles
Open Access
Combatting lime kiln ringing problems at the Arauco Constitución mill, TAPPI Journal July 2020

ABSTRACT: The lime kiln at the Arauco Constitución mill experienced severe ringing problems requiring it to be shut down for ring removal every 3 to 6 months. The mill controlled the problems by blasting ring deposits off during operation with its existing industrial shotgun and a newly installed Cardox liquid carbon dioxide (CO2) cartridge system. Various ring blasting procedures were tested to determine the optimum ring location and thickness to blast; the optimum depth to insert the CO2 cartridge into the kiln; and the most effective blasting frequency and sequence to employ. The best strategy was found to be the weekly blasting operation that alternated between the liquid CO2 cartridge and the industrial shotgun, with the CO2 cartridge inserted into the ring mass, 20 cm (8 in.) away from the refractory brick surface, and the shotgun aimed at rings at about 28 m (92 ft) from the kiln discharge end. With each blasting event removing considerably more rings than before, it takes a longer time for rings to rebuild, allowing the kiln to run continuously between annual maintenance shutdowns with only a few short (< 4 h) downtimes for ring removal. This substantially reduces the costs associated with ring removal and lime replacement during unscheduled shutdowns.

Journal articles
Magazine articles
Open Access
Cross-flow separation characteristics and piloting of graphene oxide nanofiltration membrane sheets and tubes for kraft black liquor concentration, TAPPI Journal September 2023

ABSTRACT: Dewatering of weak black liquor (WBL) in the kraft cycle by evaporation is highly energy intensive. Membranes are an attractive alternative for energy-efficient dewatering, but existing commercial polymeric or ceramic membranes are either degraded in BL or have high capital costs. Our recent works have demonstrated the engineering of graphene oxide (GO) nanofiltration membranes, their stability and promising performance in BL conditions, and preliminary scale-up into sheets and tubes. Here, we describe in detail the separation characteristics of GO membrane sheets and tubes under real BL conditions and crossflow operation. Recycle-mode piloting of a GO tubular membrane showed average “production flux” of 16 L/m2/h (LMH) and high rejections of lignin (98.3%), total solids (66%), and total organic carbon (83%), with no signs of irreversible fouling identified. A corresponding GO sheet membrane produced an average flux of ~25 LMH and maintained high lignin rejection of ~97% during a slipstream pilot at a kraft mill site using WBL with ~16 wt% total solids (TS). Finally, we piloted a Dow/DuPont XUS1808 polyamide composite reverse osmosis (RO) membrane for last-mile processing of the GO nanofiltration membrane permeate. The RO membrane showed a steady state flux of 19 LMH at 65 bar and produced ~0.02 wt% TS water product, which is highly suitable for reuse in pulp washing operations in the kraft process. The results have strong positive implications for the industrial application of GO membranes in BL concentration and other related applications.