Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1–10 of 358 results (Duration : 0.014 seconds)
Magazine articles
Open Access
Corrosion in lower furnace of kraft recovery boilersâ??in-situ characterization of corrosive environments, Solutions! & TAPPI JOURNAL, February 2004, Vol. 3(2) (179KB)

Corrosion in lower furnace of kraft recovery boilers–in-situ characterization of corrosive environments, Solutions! & TAPPI JOURNAL, February 2004, Vol. 3(2) (179KB)

Journal articles
Magazine articles
Open Access
Flow rheology of light foams generated from aqueous solutions of polyvinyl alcohol, TAPPI Journal January 2023

ABSTRACT: Recent studies have shown that foam-assisted application of additives into a wet web has advantages over the conventional way of adding the chemicals into the pulp suspension before forming, e.g., increased mechanical retention as well as high dosage giving increased wet strength without impairing the sheet uniformity. To engineer processes utilizing this new technology, the complex flow behavior of applied foams must be quantified. At the minimum, the foam viscosity and the slip velocity at the solid surfaces need to be known to build practical models that can be used in analyzing and upscaling unit processes of the foam-assisted application.In this study, the rheological behavior was quantified for foams having polyvinyl alcohol (PVOH), a widely used strength additive chemical, as the surfactant. The foam density was varied between 100 g/L and 300 g/L, and the concentration of the PVOH solution was varied between 0.5% and 6.0% (w/w). The foams were generated with a commercial foam generator, and the rheological properties of the foams were measured by using a horizontal pipe bank. At the outlet from the generator, the volumetric flow rate, the absolute pressure, and the bubble size distribution of the foam were measured. In the measurement pipe section, the viscous pressure gradient and the slip velocity were measured, after which the foam was discharged to ambient air pressure. The viscosity and the dynamic surface tension of the PVOH solutions were quantified with commercial laboratory devices. In the viscosity analysis, the apparent shear rate was calculated from the volumetric flow rate, and the resulting apparent viscosity was translated to real material viscosity data by applying the Weissenberg-Rabinowitsch correction. The results indicated that PVOH foams can be described with high accuracy as shear-thinning power-law fluids where the detailed behavior depends on the foam density and the PVOH concentration. Slip flow, as usual, increased with increasing wall shear stress, but it was also dependent on the PVOH concentration, the air content, and the bubble size. For both the foam viscosity and the slip flow, a correlation was found that described the quantitative behavior of all the studied foams with good accuracy.

Magazine articles
Open Access
Forklift emissions - some solutions, TAPPI JOURNAL, December 1993, Vol. 76(12)

Forklift emissions - some solutions, TAPPI JOURNAL, December 1993, Vol. 76(12)

Journal articles
Magazine articles
Open Access
Equilibrium moisture content in wet pressing of paper, TAPPI Journal July 2020

ABSTRACT: Equilibrium moisture is a limiting factor in achieving high solids in the later stages of pressing or pressing low basis weight grades. We have developed a model that relates equilibrium moisture directly to the pore size distribution of fibers as measured by the solute exclusion technique. The model shows that chemical pulping and refining increase equilibrium moisture by increasing pore volume at given pore sizes in fibers, which leads to lower pressed solids and greater energy expenditure in the dryer section. Means to increase equilibrium moisture without compromising pulp strength are briefly discussed.

Journal articles
Magazine articles
Open Access
Novel test method for measuring defects in barrier coatings, TAPPI Journal November 2022

ABSTRACT: In the last several years, activity to develop water-based barrier coatings (WBBCs) that meet challenging packaging performance requirements has increased dramatically. Cellulose-based packaging solutions can provide a more sustainable packaging option for replacing single-use plastic-based options like extrusion-based and laminated materials. An advantage of WBBCs is the opportunity to reduce the coating thickness applied, as long as the barrier requirements can be met. A challenge that must be overcome is the ability to maintain a defect and pin-hole-free coating layer after coating and drying to retain the barrier performance. Many formulation and coating parameters can affect the barrier coating layer quality; however, methods for detecting more subtle differences in these types of studies are not widely available. Work was carried out to develop a quantitative technique for detecting and measuring the quantity and size of defects in the barrier coating layer. A test method has been developed using a combination of dyed oil and image analysis to be able to characterize the imperfections in the coating surface. The use of dyed oil serves two purposes. First, it better simulates the types of materials, in this case, oils and grease, for which the barrier coating is expected to hold out. Second, it also provides contrast between the coating and failure points for testing. An image analysis technique is employed to characterize the number and size of the imperfections. For the former, it reduces the testing time required if a quality control or laboratory technician counts the dots. For the latter, it assists with judgment on the source of the root cause of the imperfection, such as base sheet defects, coating dispersion issues, or perhaps micro-blisters in the coating, as some examples.To show the benefit of this technique, several pilot coating studies were designed to see if the new technique could be utilized to detect differences in WBBC performance. Both process and chemical variables were evaluated. With refinement, it is believed this technique can be utilized in development work, as well as for a potential quality control technique for manufacturing of coated paper and paperboard products.

Journal articles
Magazine articles
Open Access
Understanding wet tear strength at varying moisture content in handsheets, TAPPI Journal January 2021

ABSTRACT: A laboratory study was conducted looking at the effects of moisture content on wet tear strength in handsheets. Three different wetting techniques were used to generate the wet tear (Elmendorf-type) data at varying moisture levels, from TAPPI standard conditions (dry) to over 60% moisture content (saturated). Unbleached hardwood and softwood fiber from full-scale kraft pulp production were used. The softwood fiber was refined using a Valley beater to reduce freeness. Handsheets were made with a blend of hardwood and softwood and with refined softwood, without the addition of wet-end chemistry. The resulting grams-force tear data obtained from the test was indexed with basis weight and plotted versus both moisture content and dryness. As moisture content levels in the handsheets increased, the wet tear strength also increased, reaching a critical maximum point. This marked a transition point on the graph where, beyond a critical moisture content level, the tear strength began to decline linearly as moisture increased. This pattern was repeated in handsheets made from a blend of hardwood and softwood and from 100% refined softwood.

Magazine articles
Open Access
Editor's Note: Jim Atkins: Technology, training & transition

Editor's Note: Jim Atkins: Technology, training & transition, TAPPI JOURNAL September 2011

Journal articles
Magazine articles
Open Access
Recovery boiler back-end heat recovery, TAPPI Journal March 2023

ABSTRACT: Sustainability and efficient use of resources are becoming increasingly important aspects in the operation of all industries. Recently, some biomass-fired boilers have been equipped with increasingly complex condensing back-end heat recovery solutions, sometimes also using heat pumps to upgrade the low-grade heat. In kraft recovery boilers, however, scrubbers are still mainly for gas cleaning, with only simple heat recovery solutions. In this paper, we use process simulation software to study the potential to improve the power generation and energy efficiency by applying condensing back-end heat recovery on a recovery boiler. Different configurations are considered, including heat pumps. Potential streams to serve as heat sinks are considered and evaluated. Lowering the recovery boiler flue gas temperature to approximately 65°C significantly decreases the flue gas losses. The heat can be recovered as hot water, which is used to partially replace low-pressure (LP) steam, making more steam available for the condensing steam turbine portion for increased power generation. The results indicate that in a simple condensing plant, some 1%•4% additional electricity could be generated. In a Nordic mill that provides district heating, even more additional electricity generation, up to 6%, could be achieved. Provided the availability of sufficient low-temperature heat sinks to use the recovered heat, as well as sufficient condensing turbine swallowing capacity to utilize the LP steam, the use of scrubbing and possibly upgrading the heat using heat pumps appears potentially useful.

Journal articles
Magazine articles
Open Access
Determining operating variables that impact internal fiber bonding using Wedge statistical analysis

ABSTRACT: In this study, Wedge statistical analysis tools were used to collect, collate, clean up, plot, and analyze several years of operational data from a commercial paper machine. The z-direction tensile (ZDT) and Scott Bond tests were chosen as representative of fiber bond strength. After analyzing thousands of operational parameters, the ones with the most significant impact upon ZDT involved starch application method, starch penetration, and the amount of starch applied. Scott bond was found to be significantly impacted by formation and refining. Final calendering of the paper web has also shown an impact on internal fiber bonding.

Journal articles
Magazine articles
Open Access
Determining operating variables that impact internal fiber bonding using Wedge statistical analysis methods, TAPPI Journal November 2021

ABSTRACT: In this study, Wedge statistical analysis tools were used to collect, collate, clean up, plot, and analyze several years of operational data from a commercial paper machine. The z-direction tensile (ZDT) and Scott Bond tests were chosen as representative of fiber bond strength. After analyzing thousands of operational parameters, the ones with the most significant impact upon ZDT involved starch application method, starch penetration, and the amount of starch applied. Scott bond was found to be significantly impacted by formation and refining. Final calendering of the paper web has also shown an impact on internal fiber bonding.