Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1–10 of 43 results (Duration : 0.007 seconds)
Journal articles
Magazine articles
Open Access
Eucalyptus black liquor properties in a lignin extraction process: density, dry solids, viscosity, inorganic, and organic content, TAPPI Journal March 2023

ABSTRACT: Extracting lignin from black liquor is becoming more common, although only a few research papers discuss the impact of the process on the liquor’s primary properties. This work aims to determine the changes in black liquor properties as it undergoes a lignin extraction process using carbon dioxide (CO2). A diluted eucalyptus black liquor sample (DBL) was acidified with CO2 to a final pH of 8.5. After filtration, the kraft lignin was removed, and the filtrated lignin lean black liquor (LLBL) was collected. Five acidified black liquors (ABL) samples were collected during acidification at pH 10.5; 10.0; 9.5; 9.0; and 8.5. The samples were analyzed regarding lignin content in solution, sodium carbonate (Na2CO3), sodium sulfate (Na2SO4), density, dry solids content, and viscosity. While Na2SO4 remained almost constant, Na2CO3 presented an enormous increase in its concentration when comparing DBL with LLBL. As pH decreased, the lignin content in the solution was also reduced due to lignin precipitation. The results showed similar behavior for dry solids, density, and viscosity of the supernatant, but an increase in density was observed around pH 9.00. In light of this, the density of LLBL turns out to be closer to the one in the initial DBL. The significant increase in carbonate content could explain this behavior during acidification with CO2 once the inorganic content significantly influences the property. The viscosity was determined from 10 s-1 to 2000 s-1. We observed a Newtonian behavior for all samples. The increase in carbonate content in the sample is crucial information to the recovery cycle, especially for calculating the mass and energy balance when targeting the use of the LLBL.

Journal articles
Magazine articles
Open Access
Displacement washing of softwood pulp cooked to various levels of residual lignin content, TAPPI Journal September 2021

ABSTRACT: This study investigates the influence of the degree of delignification of kraft spruce pulp cooked at seven different kappa numbers, ranging from 18.1 to 50.1, on the efficiency of displacement washing under laboratory conditions. Although the pulp bed is a polydispersive and heterogeneous system, the correlation dependence of the wash yield and bed efficiency on the Péclet number and the kappa number of the pulp showed that washing efficiency increased not only with an increasing Péclet number, but also with an increasing kappa number. The linear dependence between the mean residence time of the solute lignin in the bed and the space time, which reflects the residence time of the wash liquid in the pulp bed, was found for all levels of the kappa number. Washing also reduced the kappa number and the residual lignin content in the pulp fibers.

Journal articles
Magazine articles
Open Access
Editorial: 2018 TAPPI Journal features diverse content, TAPPI Journal November 2018

Editorial: 2018 TAPPI Journal features diverse content, TAPPI Journal November 2018

Journal articles
Magazine articles
Open Access
Editorial: TAPPI Journal 2019 Best Research Paper addresses hard scale formation in green liquor pipelines, TAPPI Journal March 2020

ABSTRACT: TAPPI and the TAPPI Journal (TJ) Editorial Board would like congratulate the authors of the 2019 TAPPI Journal Best Research Paper Award: Alisha Giglio, Vladimiros Papangelakis, and Honghi Tran. Their paper, “The solubility of calcium carbonate in green liquor handling systems,” appeared on p. 595 of the October 2019 issue. This kraft recovery cycle research was recognized by the TJ Editorial Board for its innovation, creativity, scientific merit, and clear expression of ideas.

Journal articles
Magazine articles
Open Access
Tetraethyl orthosilicate-containing dispersion coating — water vapor and liquid water barrier properties, TAPPI Journal September 2021

ABSTRACT: An aqueous styrene-butadiene latex dispersion coating containing in-situ processed tetraethyl orthosilicate (TEOS) applied on paperboard demonstrated improved water barrier performance. Coatings containing TEOS equivalent to 0.8% silicon dioxide (SiO2; dry basis) exhibited water vapor performance of < 25 g/m2/day (23°C, 50% relative humidity [RH]) and liquid water barrier performance Cobb 1800 s of < 6 g/m2, when applied as a single-layer 18 g/m2 coating. Cobb 1800 s barrier performance was still good (< 11 g/m2) at coat weights of 7–10 g/m2. The use of filler materials such as kaolin improved the vapor barrier properties of the coating, but this was not critical to the liquid water barrier properties.

Journal articles
Magazine articles
Open Access
Considerations in managing wastewater odor at pulp and paper operations, TAPPI Journal March 2022

ABSTRACT: Many pulp and paper mills are, at least periodically, faced with the release of odors that can migrate offsite and be considered a nuisance by nearby residents. At chemical pulp mills, perceptible odors associated with reduced sulfur compounds (RSCs) are common, many of which are highly perceptible owing to their low odor thresholds. As releases of RSCs and other odorous substances from production processes are progressively controlled, the proportional contribution from wastewater treatment systems to areal odors can increase. This review paper summarizes important fundamentals of odor generation, source identification, and control. Common odorous substances are identified, and mechanisms for their generation are summarized. Approaches for measuring odorous substances are detailed to enable more effective management, and various odor control strategies are discussed.

Journal articles
Magazine articles
Open Access
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) — Fibrous substrates, TAPPI Journal September 2023

ABSTRACT: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been implemented during the finishing process of textiles such as upholstery, clothing, personal protective equipment, and sports gear to provide water resistance. Currently, PFAS are still present at quantifiable levels in consumer products and food, even though many companies have started to phase out PFAS treatment with non-toxic water repellant replacements given the possible detrimental health effects suggested by current research. This paper is a detailed review that focuses on how PFAS are implemented in textile production and sources of PFAS contamination during chemical treatments. This review also addresses current legislation on PFAS emissions and trade regulations to decrease exposure of consumers due to toxicokinetics and mechanisms of action through-out the body that are still not well understood. This paper includes a literature review on possible PFAS related health conditions shown from past research and contains suggested toxicity levels, exposure routes, duration, and pathways detailed to the best of our ability.

Journal articles
Magazine articles
Open Access
Fate of phosphorus in the recovery cycle of the kraft pulping process, TAPPI Journal March 2020

ABSTRACT: The accumulation of nonprocess elements in the recovery cycle is a common problem for kraft pulp mills trying to reduce their water closure or to utilize biofuels in their lime kiln. Nonprocess elements such as magnesium (Mg), manganese (Mn), silicon (Si), aluminum (Al), and phosphorus (P) enter the recovery cycle via wood, make-up chemicals, lime rock, biofuels, and process water. The main purge point for these elements is green liquor dregs and lime mud. If not purged, these elements can cause operational problems for the mill. Phosphorus reacts with calcium oxide (CaO) in the lime during slaking; as a result, part of the lime is unavailable for slaking reactions. The first part of this project, through laboratory work, identified rhenanite (NaCa(PO4)) as the form of P in the lime cycle and showed the negative effect of P on the availability of the lime. The second part of this project involved field studies and performing a mass balance for P at a Canadian kraft pulp mill.

Journal articles
Magazine articles
Open Access
Synthesis of filtrate reducer from biogas residue and its application in drilling fluid, TAPPI Journal March 2020

ABSTRACT: Biogas residues (BR) containing cellulose and lignin are produced with the rapid development of biogas engineering. BR can be used to prepare the filtrate reducer of water-based drilling fluid in oilfields by chemical modification. BR from anaerobically fermenting grain stillage was alkalized and etherified by caustic soda and chloroacetic acid to prepare filtrate reducer, which was named as FBR. The long-chain crystalline polysaccharides were selected as dispersing agents (DA), and the water-soluble silicate was used as the cross-linking agent. After the hot rolling of FBR in saturated saltwater base mud for 16 h at 120°C, the filtration loss was increased from 7.20 mL/30 min before aging to 8.80 mL/30 min after aging. Compared with the commercial filtrate reducers, FBR had better tolerance to high temperature and salt, and lower cost.

Journal articles
Magazine articles
Open Access
Effect of high sulfate content on viscosity of recovery boiler molten smelt, TAPPI Journal March 2024

ABSTRACT: A systematic study was conducted to examine the effect of high sulfate content on the freezing temperature of molten smelt and how this may contribute to the formation of viscous jellyroll smelt in recovery boilers. The results show that even for recovery boilers with a smelt reduction as low as 70%, the sulfate content in smelt has no or little effect on smelt freezing temperature, and hence, on molten smelt fluidity. The perceived adverse effect of high sulfate content on smelt fluidity and on jellyroll smelt formation comes from the high sulfate content in deposits that have fallen from the upper furnace. Fallen deposits may or may not form jellyroll smelt, depending on whether or not they can melt and be well-mixed with molten smelt by the time they reach the smelt spouts. It is not the high sulfate content in smelt resulting from the low smelt reduction efficiency that makes molten smelt viscous and forms jellyroll smelt, but rather, it is the incomplete melting of fallen deposits that results in one of the proposed mechanisms for jellyroll smelt formation.