Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1–10 of 27 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Eucalyptus black liquor properties in a lignin extraction process: density, dry solids, viscosity, inorganic, and organic content, TAPPI Journal March 2023

ABSTRACT: Extracting lignin from black liquor is becoming more common, although only a few research papers discuss the impact of the process on the liquor’s primary properties. This work aims to determine the changes in black liquor properties as it undergoes a lignin extraction process using carbon dioxide (CO2). A diluted eucalyptus black liquor sample (DBL) was acidified with CO2 to a final pH of 8.5. After filtration, the kraft lignin was removed, and the filtrated lignin lean black liquor (LLBL) was collected. Five acidified black liquors (ABL) samples were collected during acidification at pH 10.5; 10.0; 9.5; 9.0; and 8.5. The samples were analyzed regarding lignin content in solution, sodium carbonate (Na2CO3), sodium sulfate (Na2SO4), density, dry solids content, and viscosity. While Na2SO4 remained almost constant, Na2CO3 presented an enormous increase in its concentration when comparing DBL with LLBL. As pH decreased, the lignin content in the solution was also reduced due to lignin precipitation. The results showed similar behavior for dry solids, density, and viscosity of the supernatant, but an increase in density was observed around pH 9.00. In light of this, the density of LLBL turns out to be closer to the one in the initial DBL. The significant increase in carbonate content could explain this behavior during acidification with CO2 once the inorganic content significantly influences the property. The viscosity was determined from 10 s-1 to 2000 s-1. We observed a Newtonian behavior for all samples. The increase in carbonate content in the sample is crucial information to the recovery cycle, especially for calculating the mass and energy balance when targeting the use of the LLBL.

Journal articles
Magazine articles
Open Access
Displacement washing of softwood pulp cooked to various levels of residual lignin content, TAPPI Journal September 2021

ABSTRACT: This study investigates the influence of the degree of delignification of kraft spruce pulp cooked at seven different kappa numbers, ranging from 18.1 to 50.1, on the efficiency of displacement washing under laboratory conditions. Although the pulp bed is a polydispersive and heterogeneous system, the correlation dependence of the wash yield and bed efficiency on the Péclet number and the kappa number of the pulp showed that washing efficiency increased not only with an increasing Péclet number, but also with an increasing kappa number. The linear dependence between the mean residence time of the solute lignin in the bed and the space time, which reflects the residence time of the wash liquid in the pulp bed, was found for all levels of the kappa number. Washing also reduced the kappa number and the residual lignin content in the pulp fibers.

Journal articles
Magazine articles
Open Access
Editorial: 2018 TAPPI Journal features diverse content, TAPPI Journal November 2018

Editorial: 2018 TAPPI Journal features diverse content, TAPPI Journal November 2018

Journal articles
Magazine articles
Open Access
Alternative “green” lime kiln fuels: Part II—Woody biomass, bio-oils, gasification, and hydrogen, TAPPI Journal May 2020

ABSTRACT: This paper is the second of a two-part series on “green” lime kiln fuels. The first part of this work reviews the use of pulp mill and recovery byproducts as either full or partial replacement of oil or natural gas in the kiln. The second part reviews the use of various forms of woody biomass, bio-oils, gasification and hydrogen as potential carbon neutral or carbon-free lime kiln fuels. Several of these options require specialized burners to supply the fuel to the kiln and high-quality metallurgy to withstand the acidic conditions of the fuel.

Journal articles
Magazine articles
Open Access
Utilization of kraft pulp mill residuals, TAPPI Journal February 2022

ABSTRACT: Kraft pulp mills produce on average about 100 kg of solid residuals per metric ton of pulp produced. The main types of mill waste are sludge from wastewater treatment plants, ash from hog fuel boilers, dregs, grits, and lime mud from causticizing plants and lime dust from lime kilns. Of these, about half is disposed of in landfills, which highlights the need and potential for waste recycling and utilization. Sludge is either incinerated in hog fuel boilers to generate steam and power or used in various forms of land application, including land spreading, composting, or as an additive for landfill or mine waste covers. The majority of hog fuel boiler ash and causticizing plant residues is landfilled. Alkaline residuals can be conditioned for use in land application, manufacture of construction materials, and production of aggregates for road work. This technical review summarizes residuals utilization methods that have been applied in pulp and paper mills at demonstration- or full-scale, and therefore may act as a guide for mill managers and operators whose goal is to diminish the costs and the environmental impact of waste management.

Journal articles
Magazine articles
Open Access
Development of converging-diverging multi-jet nozzles for molten smelt shattering in kraft recovery boilers, TAPPI Journal March 2021

ABSTRACT: The effective shattering of molten smelt is highly desired in recovery boiler systems. Ideally, shatter jet nozzle designs should: i) generate high shattering energy; ii) create a wide coverage; and iii) minimize steam consumption. This study proposes a novel converging-diverging multi-jet nozzle design to achieve these goals. A laboratory setup was established, and the nozzle performance was evaluated by generating jet pressure profiles from the measurement of a pitot tube array. The results show that the shatter jet strength is greater with a large throat diameter, high inlet pressure, and a short distance between the nozzle exit and impingement position. Increasing the number of orifices generates a wider jet coverage, and the distance between the orifices should be limited to avoid the formation of a low-pressure region between the orifices. The study also demonstrates that an optimized converging-diverging multi-jet nozzle significantly outperformed a conventional shatter jet nozzle by achieving higher energy and wider coverage while consuming less steam.

Journal articles
Magazine articles
Open Access
Wheat straw as an alternative pulp fiber, TAPPI Journal January 2020

ABSTRACT: The desire to market sustainable packaging materials has led to an interest in the use of various fiber types as a raw material. It has been suggested that the use of annual crops for partial replacement of wood fiber would result in more sustainable products. Several life cycle analyses (LCA) have been performed to evaluate these claims. These LCAs provided conflicting and contradictory results because of the local conditions and the specific pulping processes investigated. Selected LCAs are reviewed and the underlying reasons for these conflicting results are analyzed.

Journal articles
Magazine articles
Open Access
Exergy and sensibility analysis of each individual effect in a kraft multiple effect evaporator, TAPPI Journal October 2019

ABSTRACT: The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.

Journal articles
Magazine articles
Open Access
Experiments and visualization of sprays from beer can and turbo liquor nozzles, TAPPI Journal February 2022

ABSTRACT: Industrial scale swirl-type black liquor nozzles were studied using water as the test fluid. Simple water spraying experiments were found to be very beneficial for studying and comparing nozzles for black liquor spraying. These kinds of experiments are important for finding better nozzle designs. Three nozzle designs were investigated to understand the functional differences between these nozzles. The pressure loss of nozzle 1 (“tangential swirl”) and nozzle 3 (“turbo”) were 97% and 38% higher compared to nozzle 2 (“tan-gential swirl”). Spray opening angles were 75°, 60°, and 35° for nozzles 1, 2, and 3, respectively. Video imaging showed that the nozzles produced sprays that were inclined a few degrees from the nozzle centerline. Spray patter-nation showed all the sprays to be asymmetric, while nozzle 2 was the most symmetric. Laser-Doppler measure-ments showed large differences in spray velocities between nozzles. The spray velocity for nozzle 1 increased from 9 m/s to 15 m/s when the flow rate was increased from 1.5 L/s to 2.5 L/s. The resulting velocity increase for nozzle 2 was from 7 m/s to 11 m/s, and for nozzle 3, it was from 8 m/s to 13 m/s. Tangential flow (swirl) directed the spray 6°–12° away from the vertical plane. Liquid sheet breakup mechanisms and lengths were estimated by analyzing high speed video images. The liquid sheet breakup mechanism for nozzle 1 was estimated to be wave formation, and the sheet length was estimated to be about 10 cm. Sheet breakup mechanisms for nozzle 2 were wave formation and sheet perforation, and the sheet length was about 20 cm. Nozzle 3 was not supposed to form a liquid sheet. Nozzle geometry was found to greatly affect spray characteristics.

Journal articles
Magazine articles
Open Access
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020

ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.