Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1–10 of 53 results (Duration : 0.015 seconds)
Journal articles
Magazine articles
Open Access
Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk, TAPPI JOURNAL July 2018

Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk, TAPPI JOURNAL July 2018

Journal articles
Magazine articles
Open Access
Rice straw-based sustainable food packaging material with improved strength and barrier properties: Development and characterization, TAPPI Journal October 2023

ABSTRACT: Sustainable food packaging paper with high barrier and strength properties was developed with rice straw nanocellulose materials. Pulping and bleaching of rice straw were performed using an organosolv pulping and DED (D: chlorine dioxide bleaching; E: sodium hydroxide extraction) bleaching sequence. Bleached rice straw pulp was refined to 90°SR using a laboratory Valley beater. The laboratory handsheets were prepared using pulp slurry at 40°SR and 90°SR. The handsheets of cellulose nanofibrils (CNFs) made of highly refined pulp (90°SR) were surface sized using alkyl ketene dimer (AKD) wax to increase the barrier properties of paper for selective food packaging applications. The paper samples were tested for mechanical, optical, surface, and barrier properties, including tensile index, burst index, tearing index, bending stiffness, elongation, porosity, apparent density, opacity, Cobb value, water vapor transmission rate (WVTR), oil and grease resistance, and contact angle. The refined pulp (90°SR) was analyzed using field-emission scanning electron microscopy (FE-SEM), and it was observed that the morphology of the developed fibers changes to the nanoscale (<100 nm) for at least one dimension. The particle size distribution of the refined pulp using DLS analyzer also confirmed the cellulose fibers to near nanoscale. It was concluded that nanofibers were formed by a high degree of the mechanical pulp refining process and found to be much more economical than alternative processes in this direction. The sample handsheets of CNFs showed good strength and barrier properties. The barrier properties further increased when surface sizing was done using low-cost, nontoxic, and biodegradable AKD wax.

Journal articles
Magazine articles
Open Access
Physical handsheet properties of pulp furnishes containing attritor-treated fibers, TAPPI JOURNAL January 2017

Physical handsheet properties of pulp furnishes containing attritor-treated fibers, TAPPI JOURNAL January 2017

Magazine articles
Open Access
Nanoparticle prospects & perspectives, TAPPI JOURNAL, May 2000, Vol. 83(5)

Nanoparticle prospects & perspectives, TAPPI JOURNAL, May 2000, Vol. 83(5)

Journal articles
Magazine articles
Open Access
Guest Editorial: Addressing nanocellulose commercialization needs: R&D collaboration is vital, TAPPI Journal April 2019

This special edition of TAPPI Journal presents demonstrable progress toward the goal of commercial-scale implementation of nanocellulose. Steve Winter of International Paper and I, as co-leads of the Cellulosic Nanomaterials team of the Alliance for Pulp & Paper Technology Innovation (APPTI), see this widespread engagement of the research community in developing innovations as critical to successful commercialization. Congratulations and thanks to TAPPI and to the researchers publishing in this issue and elsewhere.

Journal articles
Open Access
Preparation and characterization of bioactive and breathable

Preparation and characterization of bioactive and breathable polyvinyl alcohol nanowebs using a combinational approach, October 2016 TAPPI JOURNAL

Journal articles
Magazine articles
Open Access
Papermaking properties of bacterial nanocellulose produced from mother of vinegar, a waste product after classical vinegar production, TAPPI Journal April 2020

ABSTRACT: Bacterial nanocellulose (BNC) has gained a lot of attention in recent years due to its nano-size-derived properties. Although it is essentially chemically similar to plant-derived cellulose, it has smaller size and is enriched in free hydroxyl groups, which greatly improve mechanical properties of reinforced paper. However, although BNC has some unique features, it comes at a high price. In this paper, we introduce a new solution for BNC production. We have isolated bacterial nanocellulose directly from agro-industrial waste—mother of vinegar—and used it in the production of paper sheets. We show here that paper sheets made with the addition of only 10% bacterial nanocellulose from mother of vinegar substantially improved basic mechanical as well as printing properties of paper.

Journal articles
Magazine articles
Open Access
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020

ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.

Magazine articles
Open Access
Imagine more in coatings, TAPPI JOURNAL, May 2000, Vol. 83(5)

Imagine more in coatings, TAPPI JOURNAL, May 2000, Vol. 83(5)

Journal articles
Open Access
Peculiarities of cellulose nanoparticles, TAPPI JOURNAL May 2014

Peculiarities of cellulose nanoparticles, TAPPI JOURNAL May 2014