Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 91–100 of 178 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Multiple recycling of paperboard: Paperboard characteristics and maximum number of recycling cycles— Part I: Multiple recycling of corrugated base paper, TAPPI Journal November 2019

ABSTRACT: Paper for recycling is an important fiber source for the production of corrugated base paper. The change in production capacity toward more and more packaging papers affects the composition of paper for recy-cling and influences the paper quality. This research project investigated the influence of the multiple recycling of five different corrugated base papers (kraftliner, neutral sulfite semichemical [NSSC] fluting, corrugating medium, testliner 2, and testliner 3) on suspen-sion and strength properties under laboratory conditions. The corrugated board base papers were repulped in a low consistency pulper and processed into Rapid-Köthen laboratory sheets. The sheets were then recycled up to 15 times in the same process. In each cycle, the suspension and the paper properties were recorded. In particular, the focus was on corrugated board-specific parameters, such as short-span compression test, ring crush test, corrugat-ing medium test, and burst. The study results indicate how multiple recycling under laboratory conditions affects fiber and paper properties.

Journal articles
Magazine articles
Open Access
Water chemistry challenges in pulping and papermaking • fundamentals and practical insights: Part 2: Conductivity, charge, and hardness, TAPPI Journal June 2023

ABSTRACT: Although water is essential to the papermaking process, papermakers often overlook its importance and focus on fibers, fillers, and chemical additives. A better understanding of water properties and chemical interactions associated with water at the wet end leads to a sound foundation for high-quality paper production and smooth operation. Water is an excellent solvent for ionic substances, both organic and inorganic. These substances contribute to system conductivity, charge, and hardness and significantly impact the papermaking process. Part 1 of this paper, published in TAPPI J. 21(6): 313(2022), discussed fundamental water properties, water chemistry, and the impact of pH on pulping and papermaking operations. In this paper, we review definitions, sources, and the typical symptoms of the effect of conductivity, charge, and hardness on the productivity of the papermaking process. Sources of conductivity, charge, and hardness impacting these factors, measurement methods, and available correction strategies for their control are also discussed.

Journal articles
Magazine articles
Open Access
Impact of fiber structure on edge-wicking of highly-sized paperboard, TAPPI JOURNAL August 2018

Impact of fiber structure on edge-wicking of highly-sized paperboard, TAPPI JOURNAL August 2018

Journal articles
Magazine articles
Open Access
Improvements in oil and grease resistance (OGR) test methodology for waterborne barrier coatings, TAPPI Journal November 2022

ABSTRACT: Paper-based food packaging is becoming more popular due to consumer demands for sustainable packaging options. Waterborne paper coatings that provide performance properties (i.e., resistance to oil and grease) not inherent to paper and board substrates offer improved sustainability profiles over earlier paper treatment options, including fluorocarbon treatment and coating with extruded plastics. The continued development of new paper coating technologies requires re-evaluation of current test methods and development of new methods to ensure lab evaluations can serve as accurate predictors of real-world performance. This paper provides an overview of commonly used oil and grease resistance (OGR) test methods within the paper coatings industry, and then describes improvements and developments made to two key methods: the 3M Kit test and an internally developed oil breakthrough test. The combined use of these adapted methods provides a more efficient testing workflow and a more complete understanding of the OGR performance of barrier coatings.

Journal articles
Magazine articles
Open Access
Control of continuous digester kappa number using generalized model predictive control, TAPPI Journal September 2024

ABSTRACT: Kappa number variability at the digester impacts pulp yield, physical strength properties, and lignin content for downstream delignification processing. Regulation of the digester kappa number is therefore of great importance to the pulp and paper industry. In this work, an industrial application of model-based predictive control (MPC), based on generalized prediction control, was developed for kappa number feedback control and applied to a dual vessel continuous digester located in Western Canada. The problem was complicated by the need to apply heat at multiple locations in the cook. In this study, the problem was reduced from a multiple to a single input system by identifying three potential single variable permutations for temperature adjustment. In the end, a coordinated approach to the heaters was adopted. The process was perturbed and modeled as a simple first order plus dead time model and implemented in generalized predictive control (GPC). The GPC was then configured to be equivalent to Dahlin’s controller, which reduced tuning parameterization to a single closed loop time constant. The controller was then tuned based on robustness towards a worst-case dead time mismatch of 50%. The control held the mean value of the kappa number close to the setpoint, and a 40% reduction in the kappa number’s standard deviation was achieved. Different kappa number trials were run, and the average fiberline yield for each period was evaluated. Trial results suggested yield gains of 0.3%•0.5% were possible for each 1 kappa number target increase.

Journal articles
Magazine articles
Open Access
Study on the effect of aluminum diethyl phosphinate in synergy with ammonium polyphosphate on the flame retardancy of cellulose paper, TAPPI Journal April 2025

ABSTRACT: This paper involved the synergistic incorporation of ammonium polyphosphate (APP) and diethyl aluminum phosphinate (AlPi) as flame-retardant fillers for producing flame-retardant paper. The research revealed that APPs were square particles with a smooth surface, and their solubility was 0.29 g/100 mL at 20°C, which increased to 4.12 g/100 mL at 60°C. The surfaces of AlPis were rough and irregular. The solubility of AlPi was 0.023 g/100 mL at 20°C, and the solubility remained stable when the temperature increased. The addition of AlPi had a minor influence on the pulp beating degree. The tensile strength of kraft/APP/AlPi decreased with the increase of the AlPi addition. For a paper with 20 wt% APP and 0 wt% AlPi, the limiting oxygen index (LOI) value was 27.2%, and it burned completely at the eighth second during vertical combustion. When the AlPi additive content increased to 20 wt%, its LOI value increased to 32.2%, and the vertical combustion self-extinguished as soon as the flame was removed. Scanning electron microscopy (SEM) showed that the char residue of the kraft/APP/AlPi had a more complete fiber network structure than that of kraft/APP. The Raman spectroscopy indicated that the area ratio of the D (amorphous phase; disordered graphite vibration) band to the G (crystal phase; graphite carbon vibration) band (ID/ IG) ratio of kraft/APP/AlPi was lower than that of kraft/APP, meaning that the graphitization degree of the char residue of kraft/APP/AlPi was higher than that of kraft/APP, which indicated the kraft/APP/AlPi had better flame retardancy.

Journal articles
Magazine articles
Open Access
A case study review of wood ash land application programs in North America, TAPPI Journal February 2021

ABSTRACT: Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash.Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.

Journal articles
Magazine articles
Open Access
Research on flame-retardant paper prepared by the method of in-pulp addition of ammonium polyphosphate, TAPPI Journal May 2023

ABSTRACT: At present, the production of flame-retardant paper usually uses the impregnation method of phosphorus-nitrogen flame retardants in paper. There are few reports on the application of an in-pulp addition method. In this paper, the solubility of ammonium polyphosphate (APP) and its effect on flame-retardant paper were investigated for use in an in-pulp addition method. It was found that APP particles were square, with an average particle size of 21.88 µm. The particle size decreased significantly after immersion in water at 25°C for 24 h. Furthermore, most of the APPs were dissolved after immersion in water at 90°C for 0.5 h, and the residuals agglomerated and their shape turned into an amorphous form. The APP possessed strong electronegativity and could partially ionize in water. The solubility of APP was 0.18 g/100 mL water at 25°C and increased quickly when the temperature was higher than 30°C. Therefore, APP should be added to the pulp at temperatures below 30°C. The tensile strength of the paper initially increased with the addition of APP, and it reached the maximum value when the APP content was 10% and then gradually decreased. The limiting oxygen index (LOI) value of the paper was 28.7% when the added amount of APP was 30% and cationic polyacrylamide (CPAM) was 0.08%, reaching the flame-retardant level.

Journal articles
Magazine articles
Open Access
Cationic emulsions of maleic anhydride derivatives of oleic and abietic acid for hydrophobic sizing of paper, TAPPI Journal 2020

ABSTRACT: Ordinary rosin sizing agents are mixtures of resin acids that include abietic acid and related compounds obtained from softwoods such as pine. Fatty acids, which are another byproduct of the kraft pulping of soft-wood species, also may have hydrophobic effects, but their use as sizing agents has seldom been considered. In the current study, abietic acid and oleic acid, in the absence of other components, were first modified by reaction with maleic acid anhydride. Then, the maleated derivatives (maleated oleic acid [MOA] and maleated abietic acid [MAA]), which were emulsified with cationic starch at the 1:1 and 3:2 ratio, respectively, were added to fiber furnish containing aluminum sulfate (papermaker’s alum). The prepared sheets were dried with a rotating drum on one side at 100°C at low pressure to cure the sizing agents. The chemical, optical strength, and absorption properties were measured. The presence of the sizing material was confirmed using time of flight secondary ion mass spectrometry (ToF-SIMS), and the retention of the sizing agent on fibers was supported by evidence of hydrocarbons on the paper surface. In addition to achieving sufficient water resistance features with MAA, a lesser hydrophobic character was obtained when using MOA. Compared to commercial applications, relatively large amounts of sizing agent were used to obtain a sufficient sizing degree. The MOA required 5% addition to achieve a similar sizing degree as MAA at the 2% level. The sizing treatments also resulted in substantial increases in tensile index value. Since cationic starch was used in the formulation of the sizing agents, the increase in tensile index may have been due to the influence of cationic starch. Contributions to paper strength from a combination of ionic complexation and mutual association of hydrophobic groups is also proposed. Depending on the amount of sizing agent, the yellowness increased, especially when sizing with MOA.

Journal articles
Magazine articles
Open Access
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2023

ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease, water, water vapor, and oxygen, for applications such as food packaging, food service, and other non-food packaging. Today, there is increasing interest in developing recyclable and more sustainable approaches for producing these types of packages. This paper focuses on water-based barrier coatings (WBBC) for oil and grease resistance (OGR), water, moisture vapor transmission rate (MVTR), and oxygen barrier performance. The main goal is to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC) in a single application step. One advantage is in optimizing coating material cost with the use of functional chemistry in confined layers where performance is balanced within the coating layered structure. This allows simultaneous application of layers of different polymer types in one step to achieve the appropriate performance needs for a given barrier application. This paper provides working examples of using MLCC to create coating structures with multiple barrier properties in a single application pass. Barrier polymers studied include styrene butadiene, styrene acrylate, starch-containing emulsions, and polyvinyl alcohol. The paper also shows the effect of increasing the pigment volume concentration with platy clay or fine ground calcium carbonate on MVTR and OGR barrier properties.