Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Optimizing OCC refining with defloccing, TAPPI Journal April 2025
ABSTRACT: Subjecting pulp to a high shear zone immediately after refining results in more efficient refining. This phenomenon was originally observed to benefit softwood pulp refining. It was attributed to floc reduction based on floc measurements in mill refiners and the observation of reduced headbox plugging. Hence, this phenomenon has been termed “defloccing.” The present work shows this technology also benefits refining of North American old corrugated containers (OCC). The combined results of several mill trials with OCC defloccing demonstrate the interactions between OCC refining intensity, defloccing technology, and other state-of-the-art refining improvements. At the same refining intensity, defloccing OCC on 100% recycled machines increases OCC refining efficiency by 15%, with greater efficiency improvement on machines that use softwood as well as OCC. Furthermore, it is shown that the benefits of defloccing are additive to refining improvements made in the refining zone of a refiner plate. Most OCC refiner plate designs can therefore benefit from the addition of a defloccing feature.
Journal articles
Magazine articles
Black liquor evaporator upgrades— life cycle cost analysis, TAPPI Journal March 2021
ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. Evaporator steam economy is defined as the unit mass of steam required to evaporate a unit mass of water from black liquor (i.e., lb/lb or kg/kg.) The economy is determined by the number of effects in an evaporator train and the system configuration. Older systems use four to six effects, most of which are the long tube vertical rising film type. Newer systems may be designed with seven or even eight effects using falling film and forced circulation crystallization technology for high product solids. The median age of all North American evaporator systems is 44 years. Roughly 25% of the current North American operating systems are 54 years or older. Older systems require more periodic maintenance and have a higher risk of unplanned downtime. Also, older systems have chronic issues with persistent liquor and vapor leaks, shell wall thinning, corrosion, and plugged tubes. Often these issues worsen to the point of requiring rebuild or replacement. When considering the age, technology, and lower efficiency of older systems, a major rebuild or new system may be warranted. The intent of this paper is to review the current state of black liquor evaporator systems in North America and present a basic method for determining whether a major rebuild or new installation is warrant-ed using total life cycle cost analysis (LCCA).
Journal articles
Magazine articles
The Impact of Digitalization on our Changing Workforce, Paper360º March/April 2021
The Impact of Digitalization on our Changing Workforce, Paper360º March/April 2021
Journal articles
Magazine articles
Editorial: Research, conferences, and COVID-19, TAPPI Journal May 2021
ABSTRACT: While medical science in fields like virology blazed a path in 2020 in developing vaccines, diagnostic tests, and treatments to combat the COVID-19 pandemic, other scientific research slowed significantly.
Journal articles
Magazine articles
Technological evaluation of Pinus maximinoi wood for industrial use in kraft pulp production, TAPPI Journal August 2021
ABSTRACT: This study characterized Pinus maximinoi wood and evaluated its performance for pulp production. Samples of Pinus taeda wood were used as reference material. For both species, wood chips from 14-year-old trees were used for the technological characterization, pulping, bleaching process analysis, and pulp properties. A modified kraft pulping process was carried out targeting kappa number 28±5% on brownstock pulp. The bleaching sequence was applied for bleached pulp with final brightness of 87±1 % ISO. Refinability and resistance properties were measured in the bleached pulps. Compared to P. taeda wood, P. maximinoi showed slightly higher basic density (0.399 g/cm³) and higher holocellulose (64.5%), lignin (31.1%), and extractives content (4.5%), along with lower ash content (0.16%). P. maximinoi tracheids showed greater wall thickness (6.4 µm) when compared to P. taeda tracheids. For the same kappa number, P. maximinoi and P. taeda resulted in similar screened yield, with an advantage observed for P. maximinoi, which resulted in lower specific wood consumption (5.281 m³/o.d. metric ton), and lower black liquor solids (1.613 metric tons/o.d. metric ton). After oxygen delignification, P. maximinoi pulp showed higher efficiency on kappa reduction (67.2%) and similar bleaching chemical demand as P. taeda pulp. Compared to P. taeda pulps, the refined P. maximinoi pulps had similar results and the bulk property was 10% higher. Results showed that P. maximinoi is an interesting alternative raw material for softwood pulp production in Brazil.
Journal articles
Magazine articles
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021
ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.
Journal articles
Magazine articles
Start with Business Strategy for Non-wood Fibers in N.A. Tissue Products, Tissue360º Fall/Winter 2020
Start with Business Strategy for Non-wood Fibers in N.A. Tissue Products, Tissue360º Fall/Winter 2020
Journal articles
Magazine articles
Coronavirus to Alter Global Toilet Paper & Tissue Production, Tissue360º Fall/Winter 2020
Coronavirus to Alter Global Toilet Paper & Tissue Production, Tissue360º Fall/Winter 2020
Journal articles
Magazine articles
The Foundations Securing Tissue’s Future, Tissue360º Fall/Winter 2020
The Foundations Securing Tissue’s Future, Tissue360º Fall/Winter 2020
Journal articles
Magazine articles
Wheat straw as an alternative pulp fiber, TAPPI Journal January 2020
Author: Peter W. Hart | ABSTRACT: The desire to market sustainable packaging materials has led to an interest in the use of various fiber types as a raw material. It has been suggested that the use of annual crops for partial replacement of wood fiber would result in more sustainable products. Several life cycle analyses (LCA) have been performed to evaluate these claims. These LCAs provided conflicting and contradictory results because of the local conditions and the specific pulping processes investigated. Selected LCAs are reviewed and the underlying reasons for these conflicting results are analyzed.