Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Pulp and paper mills: The original biorefineries — past performance and limitations to future opportunities, TAPPI Journal October 2023
ABSTRACT: Pulp mills have been biorefineries since the invention of the Tomlinson recovery boiler. Unfortunately, the paper industry has done a poor job explaining that concept to the general public. A number of bioproducts in everyday use have been produced by pulp mills for several decades, and new products are routinely being developed. Modern research efforts over the last couple of decades have focused on producing even more products from pulp and paper mills through capacity enhancement and the development of value-added products and liquid transportation fuels to enhance paper mill profitability. Some of these efforts, often referred to as modern biorefineries, have focused so heavily on product development that they have ignored operating and process realities that limit the transformation of pulp and paper mills from the current limited number of bioproducts produced today to economic scale production of these value-added products. In this paper, several of these limitations are addressed. In addition, there are several supply chain, marketing, product quality, and economic realities limiting the value potential for these wholesale conversions of pulp mills into multiproduct modern biorefineries. Finally, the conservative nature and capital intensity of the pulp and paper industries provide a difficult hurdle for conversion to the modern biorefinery concept. These issues are also reviewed.
Journal articles
Magazine articles
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal Octobr 2021
ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.
Journal articles
Magazine articles
Dynamic out-of-plane compression of paperboard — Influence of impact velocity on the surface, TAPPI Journal February 2024
ABSTRACT: Processes that convert paperboard into finished products include, for example, printing, where the paperboard is subjected to rapid Z-directional (ZD) compression in the print nip. However, measuring and evaluating the relevant properties in the thickness direction of paperboard are not necessarily straightforward or easy. Measuring at relevant, millisecond deformation rates further complicates the problem. The aim of the present work is to elucidate some of the influences on the compressive stiffness. Both the initial material response and the overall compressibility of the paperboard is studied. In this project, the effect on the material response from the surface structure and the millisecond timescale recovery is explored.The method utilized is a machine called the Rapid ZD-tester. The device drops a probe in freefall on the substrate and records the probe position, thus acquiring the deformation of the substrate. The probe is also allowed to bounce several times on the surface for consecutive impacts before being lifted for the next drop. To investigate the time dependent stiffness behavior, the probe is dropped several times at the same XY position on the paperboard from different heights, thus achieving different impact velocities. The material response from drops and bounces combined allows study of the short-term recovery of the material. The material in the study is commercial paperboard. The paperboard samples are compared to material where the surface has been smoothed by grinding it. Our study shows that there is a non-permanent reduction in thickness and a stiffening per bounce of the probe, indicating a compaction that has not recovered in the millisecond timescale. Additionally, a higher impact velocity has an initial stiffening effect on the paperboard, and this is reduced by smoothing the surface.
Journal articles
Magazine articles
Effects of carboxymethyl starch as a papermaking additive, TAPPI Journal February 2024
ABSTRACT: Carboxymethyl starch (CMS) is a bio-based, anionic polymer that has potential as part of a dry-strength additive program for papermaking. Due to its negative charge, its effects can be expected to depend on its interactions with various cationic agents. In this work, the effects of CMS were observed following its sequential addition after one of three selected cationic strength agents at different dosage levels. In selected tests, the furnish was pretreated at the 1% level by a dispersant, sodium polyacrylate, which might represent a high level of anionic contaminants in a paper mill system. Laboratory tests were conducted to show the effects on dewatering, fine-particle retention, and flocculation. These tests were supplemented with measurements of charge demand, zeta potential, and handsheet properties. Sequential addition of cationic glyoxylated acrylamide copolymers (gPAM) and CMS were found to strongly promote dewatering. Two gPAM products and a poly(vinylamine) product in sequential addition with CMS were very effective for promoting fine-particle retention. These same sequential treatments of the stock contributed to moderate fiber flocculation, though severe flocculation was caused by further treatment of the furnish with colloidal silica. Handsheet strength results were mixed. In the default recycled copy paper furnish, the average breaking length for the sheets made with cationic additives followed by CMS was not greatly different from the blank condition. Superior strength resulted when the default furnish was treated with a dispersant alone. When the dispersant-contaminated furnish was treated with the same combinations of cationic additives and CMS, the strength returned to the baseline achieved in the absence of the dispersant. The results were discussed in terms of the charged character of the different additives and their interactions not only with the fiber surfaces but also with each other.
Journal articles
Magazine articles
Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of su
Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of sugarcane straw (SCS), TAPPI JOURNAL June 2017
Journal articles
Magazine articles
Numerical analysis of the impact of rotor and screen hole plate design on the performance of a vertical pulper, TAPPI Journal April 2025
ABSTRACT: The dissolving of mechanical pulp is one of the most important process steps in stock preparation, since pulping occurs at the very beginning of the papermaking process. Efficient mixing of the pulp in a short amount of time is essential to achieve high furnish volume flow rates. The design of the rotor, as well as the pulper vat and inserts, significantly affects the overall performance of the pulper, such as mixing efficiency and power demand. Using advanced numerical methods such as computational fluid dynamics (CFD) can accelerate the development process. The CFD simulations allow for detailed analysis of flow phenomena, making it possible to study a real-size machine numerically. This approach is particularly advantageous because it can reduce the need for timeconsuming and costly experiments associated with scaling up test rigs. In this study, we compared two different rotor designs utilized in a vertical pulper and evaluated the numerical results with experimental data. Rotor A is designed for low turbulence and low power demand, while rotor B is designed for high turbulence with high power demand. The CFD results showed good agreement with the experimental measurements. We investigated how the rotor design influences the free fluid surface and the mixing efficiency. Our study also highlights the differences in results depending on whether water or furnish is simulated, which exhibit Newtonian or, respectively, non-Newtonian fluid behavior. Additionally, a detailed numerical investigation of various screen hole plate designs revealed that the newly developed hole design significantly reduces pressure loss compared to a standard drilled hole. This outcome was consistent for both types of fluids investigated: water and furnish.
Journal articles
Magazine articles
Experiments and visualization of sprays from beer can and turbo liquor nozzles, TAPPI Journal February 2022
ABSTRACT: Industrial scale swirl-type black liquor nozzles were studied using water as the test fluid. Simple water spraying experiments were found to be very beneficial for studying and comparing nozzles for black liquor spraying. These kinds of experiments are important for finding better nozzle designs. Three nozzle designs were investigated to understand the functional differences between these nozzles. The pressure loss of nozzle 1 (“tangential swirl”) and nozzle 3 (“turbo”) were 97% and 38% higher compared to nozzle 2 (“tan-gential swirl”). Spray opening angles were 75°, 60°, and 35° for nozzles 1, 2, and 3, respectively. Video imaging showed that the nozzles produced sprays that were inclined a few degrees from the nozzle centerline. Spray patter-nation showed all the sprays to be asymmetric, while nozzle 2 was the most symmetric. Laser-Doppler measure-ments showed large differences in spray velocities between nozzles. The spray velocity for nozzle 1 increased from 9 m/s to 15 m/s when the flow rate was increased from 1.5 L/s to 2.5 L/s. The resulting velocity increase for nozzle 2 was from 7 m/s to 11 m/s, and for nozzle 3, it was from 8 m/s to 13 m/s. Tangential flow (swirl) directed the spray 6°•12° away from the vertical plane. Liquid sheet breakup mechanisms and lengths were estimated by analyzing high speed video images. The liquid sheet breakup mechanism for nozzle 1 was estimated to be wave formation, and the sheet length was estimated to be about 10 cm. Sheet breakup mechanisms for nozzle 2 were wave formation and sheet perforation, and the sheet length was about 20 cm. Nozzle 3 was not supposed to form a liquid sheet. Nozzle geometry was found to greatly affect spray characteristics.
Journal articles
Magazine articles
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019
ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.
Journal articles
Magazine articles
A case study review of wood ash land application programs in North America, TAPPI Journal February 2021
ABSTRACT: Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash.Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.
Journal articles
Magazine articles
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021
ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.