Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,311–1,320 of 1,467 results (Duration : 0.012 seconds)
Journal articles
Magazine articles
Open Access
Review of coating cracking and barrier integrity on paperboard substrates, TAPPI Journal November 2022

ABSTRACT: Barrier packaging formats are major growth areas for the pulp and paper industry. It is technically challenging to maintain barrier properties during converting and end-use applications. Improved manufacturing capabilities and coating formulation knowledge will help maintain barrier integrity and enable growth of barrier products in challenging applications. These improvements will accelerate product development and commercialization, and allow faster response to product performance issues such as cracking. The literature on coating cracking provides knowledge mostly on the effects of coating formulations and to a lesser extent on substrate effects. Despite a large number of publications dedicated to coating failures, the approach to improve coating cracking remains empirical, and the transferability between studies and to real life applications has not been well established. Model development that successfully predicts commercial performance is in its infancy. However, some of these simplified models do a fairly good job predicting experimental data. The current work reviews the state of understanding as regards coating and barrier cracking and highlights the need for more research on cracking and barrier integrity.

Journal articles
Magazine articles
Open Access
Utilization of palm fiber as papermaking materials: Microscopic structure and chemical pulping, TAPPI Journal October 2022

ABSTRACT: The microscopic structure and pulping properties of palm fiber were explored. Soda cooking and sulfate cooking were conducted and compared in terms of physical strength of the obtained pulps. Sulfate pulp showed better performance than soda pulp, as indicated by the 23% higher tensile index, 49% higher tear index, and 36% higher burst index. To further elevate physical strength, long fibered pulp (LFP), namely commercial softwood sulfate pulp, was mixed with sulfate pulp of palm fiber at levels from 20% to 50%. At the blend level of 50%, tensile index of 52.13 Nœm/g, tear index of 15.63 mNœm2/g, and burst index of 3.42 kPaœm2/g were attained. The lignin in spent liquor from pulping was isolated and characterized. Soda lignin of palm fiber was mainly composed of guaiacyl and syringyl units, and showed weight-average molecular weight of 3616 g/mol.

Journal articles
Magazine articles
Open Access
Convolutional neural networks enhance pyrolysis gas chromatography mass spectrometry identification of coated papers, TAPPI Journal August 2024

ABSTRACT: In the evolving paper industry, accurate identification of coated paper components is essential for sustainability and recycling efforts. This study employed pyrolysis-gas chromatography mass spectrometry (Py-GCMS) to examine six types of coated paper. A key finding was the minimal interference of the paper substrate with the pyrolysis products of the coatings, ensuring reliable analysis. A one-dimensional convolutional neural network (1D-CNN) was employed to process the extracted ion chromatograms directly, simplifying the workflow and achieving a predictive accuracy of 95.2% in identifying different coating compositions. Additionally, the study high-lighted the importance of selecting an optimal pyrolysis temperature for effective feature extraction in machine learning models. Specific markers for coated papers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene succinate (PBS), polylactic acid (PLA), and waterborne polyacrylates (WP), were identified. This research demonstrates a novel approach to coated paper identification by combining Py-GCMS with machine learning, offering a foundation for further studies in product quality and environmental impact.

Journal articles
Magazine articles
Open Access
Effect of high sulfate content on viscosity of recovery boiler molten smelt, TAPPI Journal March 2024

ABSTRACT: A systematic study was conducted to examine the effect of high sulfate content on the freezing temperature of molten smelt and how this may contribute to the formation of viscous jellyroll smelt in recovery boilers. The results show that even for recovery boilers with a smelt reduction as low as 70%, the sulfate content in smelt has no or little effect on smelt freezing temperature, and hence, on molten smelt fluidity. The perceived adverse effect of high sulfate content on smelt fluidity and on jellyroll smelt formation comes from the high sulfate content in deposits that have fallen from the upper furnace. Fallen deposits may or may not form jellyroll smelt, depending on whether or not they can melt and be well-mixed with molten smelt by the time they reach the smelt spouts. It is not the high sulfate content in smelt resulting from the low smelt reduction efficiency that makes molten smelt viscous and forms jellyroll smelt, but rather, it is the incomplete melting of fallen deposits that results in one of the proposed mechanisms for jellyroll smelt formation.

Journal articles
Magazine articles
Open Access
Optimizing OCC refining with defloccing, TAPPI Journal April 2025

ABSTRACT: Subjecting pulp to a high shear zone immediately after refining results in more efficient refining. This phenomenon was originally observed to benefit softwood pulp refining. It was attributed to floc reduction based on floc measurements in mill refiners and the observation of reduced headbox plugging. Hence, this phenomenon has been termed “defloccing.” The present work shows this technology also benefits refining of North American old corrugated containers (OCC). The combined results of several mill trials with OCC defloccing demonstrate the interactions between OCC refining intensity, defloccing technology, and other state-of-the-art refining improvements. At the same refining intensity, defloccing OCC on 100% recycled machines increases OCC refining efficiency by 15%, with greater efficiency improvement on machines that use softwood as well as OCC. Furthermore, it is shown that the benefits of defloccing are additive to refining improvements made in the refining zone of a refiner plate. Most OCC refiner plate designs can therefore benefit from the addition of a defloccing feature.

Journal articles
Magazine articles
Application of spruce wood flour as a cellulosic-based wood additive for recycled paper applications— A pilot paper machine study, TAPPI Journal October 2021

ABSTRACT: This study gives a first insight into the use of wood flour as a plant-based and cellulosic-based alternative additive for newsprint and paperboard production using 100% recycled fibers as a raw material. The study compares four varieties of a spruce wood flour product serving as cellulosic-based additives at addition rates of 2%, 4%, and 6% during operation of a 12-in. laboratory pilot paper machine. Strength properties of the produced news-print and linerboard products were analyzed. Results suggested that spruce wood flour as a cellulosic-based additive represents a promising approach for improving physical properties of paper and linerboard products made from 100% recycled fiber content. This study shows that wood flour pretreated with a plant-based polysaccharide and untreated spruce wood flour product with a particle size range of 20 µm to 40 µm and 40 µm to 70 µm can increase the bulk and tensile properties in newsprint and linerboard applications.

Journal articles
Magazine articles
SetPoint: Powerful Influences, Paper360º January/February 2020

SetPoint: Powerful Influences, Paper360º January/February 2020

Journal articles
Magazine articles
Green Bay Packaging Keeps Safety in the Family, Paper360º January/February 2020

Green Bay Packaging Keeps Safety in the Family, Paper360º January/February 2020

Journal articles
Magazine articles
Open Access
Fundamental understanding of removal of liquid thin film trapped between fibers in the paper drying process: A microscopic approach, TAPPI Journal May 2020

ABSTRACT: In the fabrication of paper, a slurry with cellulose fibers and other matter is drained, pressed, and dried. The latter step requires considerable energy consumption. In the structure of wet paper, there are two different types of water: free water and bound water. Free water can be removed most effectively. However, removing bound water consumes a large portion of energy during the process. The focus of this paper is on the intermediate stage of the drying process, from free water toward bound water where the remaining free water is present on the surfaces of the fibers in the form of a liquid film. For simplicity, the drying process considered in this study corresponds to pure convective drying through the paper sheet. The physics of removing a thin liquid film trapped between fibers in the paper drying process is explored. The film is assumed to be incompressible, viscous, and subject to evaporation, thermocapillarity, and surface tension. By using a volume of fluid (VOF) model, the effect of the previously mentioned parameters on drying behavior of the thin film is investigated.

Journal articles
Magazine articles
Open Access
Editorial: The next phase of research in academia and industry, TAPPI Journal September 2023

ABSTRACT: The pulp, paper, and textile sectors have contrib-uted to lifestyle improvements for people with the development and commercialization of products like toilet tissue, facial wipes, diapers, and feminine hygiene products, to name a few. Research and development (R&D) efforts in these sectors are critical now more than ever due to the need for healthcare and lifesaving products, as became evident with the COVID-19 pandemic. Additionally, the need to meet net-zero carbon goals and the necessity to revive manufacturing in devel-oped economies clearly emphasize the requirement to ex-amine the R&D landscape. Academia, industry, and governments have respective roles to play in this field.