Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Color removal from kraft bleach-plant effluents by trichoderma sp., TAPPI JOURNAL, January 1991, Vol. 74(1)
Color removal from kraft bleach-plant effluents by trichoderma sp., TAPPI JOURNAL, January 1991, Vol. 74(1)
Journal articles
Magazine articles
Experimental investigations into fold cracking of double coated barrier dispersion coatings, TAPPI Journal November 2024
ABSTRACT: The trend for replacing single-use plastics with fiber-based barrier coated board packaging has prompted a significant amount of research. There are many proposed ways of providing suitable packaging for applications like food service. Among these are dispersion coated barriers on board, as well as laminated boards that can be produced using conventional polyethylene (PE) or new biodegradable plastics. Minerals have also been shown to be suitable additives to these coatings for improving barrier performance through surface chemistry and by increasing the tortuosity of the pathway through the barrier layer. They also improve the cost effectiveness of the layer by lowering the material cost and raising the solids content, and by improving hold out of the functional layers, leading to a reduction in the amount of barrier coating needed to meet a given performance requirement. Minerals can also aid in the barrier handling in terms of rheology and reduced “stickiness,” as well as blocking of the films. When incorporated as fillers into extruded films, improved adhesion of the film to the board has been reported. One of the remaining challenges is the potential for cracking at the fold during converting and the loss of barrier performance that this can lead to. In this work, we systematically looked at the impact of mineral type and level in a dispersion coating. We assessed the differences in performance resulting from different coating application methods for the precoat layer by looking at the cracking tendency and loss of barrier functionality after folding for both the precoat alone and the final double coated sheets. Barrier results include moisture vapor transmission rate (MVTR), viscous vegetable oil, and the fluid blue stain in industrial methylated spirits (IMS) and Cobb water absorption, both before and after folding.
Journal articles
Magazine articles
Effects of hydrodynamic shear during formation of paper sheets with the addition of nanofibrillated cellulose, cationic starch, and cationic retention aid, TAPPI Journal September 2024
ABSTRACT: Laboratory tests were conducted to evaluate effects of hydrodynamic shear levels on papermaking process variables and paper handsheet properties. The furnish was from 100% recycled copy paper, to which was added nanofibrillated cellulose (NFC) at the 5% level following its optional pretreatment with cationic starch. A cationic copolymer of acrylamide (cPAM) was used as the retention aid. Different levels of hydrodynamic shear were applied both after mixing the NFC with the cationic starch (pre-shearing) or after all the furnish components had been combined (final shearing). The presence or absence of pre-shearing was found to have little effect on the measured outcomes. By contrast, increasing final shear hurt filler retention and made the resulting paper more uniform. However, the final shear level did not have a significant effect on the tensile strength of the resulting handsheets. Medium-charge density cationic starch, used in pretreating the NFC, consistently gave greater strength in comparison to a high-charge cationic starch. The significance of these findings is that though the relatively high hydrodynamic shear levels associated with modern paper machines can have some beneficial effects, they do not necessarily overcome all challenges associated with wet-end addition of nanocellulose in combination with other additives.
Journal articles
Magazine articles
Dynamic compression characteristics of fiber-reinforced shoe press belts, TAPPI Journal April 2025
ABSTRACT: Shoe press belts contribute significantly to the overall dewatering performance in the press section of a paper machine. Within the shoe press nip, the press belt faces a dynamic and multidimensional load that mainly leads to a compression of the structure. As this will cause a loss in void volume, knowledge of the dynamic compression characteristics of shoe press belts is crucial for optimized dewatering. A novel method was developed to examine the dynamic compression characteristics of grooved polyurethane press belts. Therefore, an experimental setup allowing realistic boundary conditions to test specimens was placed in a servo-hydraulic testing machine. Press belt specimens with different matrix material formulations and groove patterns were tested under varying load rates equivalent to different paper machine operational speeds. The results showed an evident sensitivity of the dynamic compression stiffness to the operational speed of the paper machine. This behavior was seen to be more sensitive to changes in the matrix material formulation than to adaptions of the groove pattern. As a result, the compression of the press belt within a shoe press nip is not only influenced by the peak pressure within the shoe press nip but also depends on the operational speed of the paper machine.
Journal articles
A targeted approach to produce energy-efficient packaging materials from high-yield pulp, TAPPI Journal August 2025
ABSTRACT: Unlike fossil-based plastics, wood-based packaging materials can be produced in an ecofriendly manner using wood chip residuals from sawmills and pulpwood. To produce high-yield pulp like chemithermomechanical pulps (CTMPs) for paperboard and liquid packaging, it is crucial to reduce the electric energy consumption during fiber separation. The ultimate objective is to revolutionize paperboard production by achieving a middle-layer CTMP process that consumes less than 200 kilowatt-hours per metric ton (kWh/t), significantly improving from the current 500•600 kWh/t energy demand. Optimizing the CTMP impregnation process of sodium sulfite (Na2SO3) in wood chips is crucial for achieving uniform softening, ideally at the fiber level. The properties of the fibers are significantly affected by the content of lignin sulfonates within the walls of the fiber and the middle lamellae. In this study, we employed in-house developed X-ray fluorescence (XRF) techniques, validated by beamline measurements, to map the distribution of sulfonated lignin within fibers. It also seemed possible to enhance the surface area of lignin-rich pulp fibers while losing minimal bulk by refining them with well-optimized low consistency (LC) refining. We aimed to achieve a highly efficient separation of coniferous wood fibers by co-optimizing the sulfonation and the temperature in the preheater and chip refiner. Additionally, we explored how lignin’s softening behavior and potential crosslinking influence subsequent unit operations, including pressing, peroxide bleaching, and drying, following the defibration process. In defibration during chip refining, the maximum softening of wood fibers is preferred to maximize fiber preservation and minimize energy consumption. However, optimizing the stiffness of finished pulp fibers is preferable to reduce bulk loss during paperboard production. It can strive to optimize processes to develop stronger, lighter, and more sustainable composite packaging materials. Reducing environmental impact and electric energy can help create a more sustainable future.
Journal articles
Editorial: The emergence of AI in additives development, TAPPI Journal March 2025
ABSTRACT: The continuing evolution of artificial intelligence (AI) and its penetration into the core of the world of papermaking were undeniable at TAPPICon 2024 and especially within the content presented and sponsored by TAPPI’s Papermaking Additives Committee. On one side of the spectrum, there were traditional methods of chemical development and application grounded in natural intelligence, while on the other, there was the emerging presence of algorithmic decision-making and machine learning within the development cycle. The latter technology is brimming with the kind of promise that could reshape how additives are conceived, developed, and applied, turning what was once a matter of trial and error into something far more precise and previously out of reach.
Journal articles
Improved barrier performance with microfibrillated cellulose, TAPPI Journal March 2025
ABSTRACT: In this work, the impact of microfibrillated cellulose (MFC) on the properties of water-based barrier coatings intended for food packaging have been explored. Commercially available MFC was used for improving the rheology and water retention of three different commercially available dispersion coatings (acrylic, styrene acrylic, and polylactic acid). Coatings were applied by rod to paper, and barrier properties were tested by measuring air permeability and water barrier properties. Results clearly showed that addition of MFC to water-based dispersion coatings improved the barrier performance of the final coatings.
Journal articles
Magazine articles
Tetraethyl orthosilicate-containing dispersion coating — water vapor and liquid water barrier properties, TAPPI Journal September 2021
ABSTRACT: An aqueous styrene-butadiene latex dispersion coating containing in-situ processed tetraethyl orthosilicate (TEOS) applied on paperboard demonstrated improved water barrier performance. Coatings containing TEOS equivalent to 0.8% silicon dioxide (SiO2; dry basis) exhibited water vapor performance of < 25 g/m2/day (23°C, 50% relative humidity [RH]) and liquid water barrier performance Cobb 1800 s of < 6 g/m2, when applied as a single-layer 18 g/m2 coating. Cobb 1800 s barrier performance was still good (< 11 g/m2) at coat weights of 7•10 g/m2. The use of filler materials such as kaolin improved the vapor barrier properties of the coating, but this was not critical to the liquid water barrier properties.
Journal articles
Magazine articles
Web lateral instability caused by nonuniform paper properties, TAPPI Journal January 2022
ABSTRACT: Lateral or cross-machine direction (CD) web movement in printing or converting can cause problems such as misregistration, wrinkles, breaks, and folder issues. The role of paper properties in this problem was studied by measuring lateral web positions on commercial printing presses and on a pilot-scale roll testing facility (RTF). The findings clearly showed that CD profiles of machine direction (MD) tension were a key factor in web stability. Uneven tension profiles cause the web to move towards the low-tension side. Although extremely nonuniform tension profiles are visible as bagginess, more often, tension profiles must be detected by precision devices such as the RTF. Once detected, the profiles may be analyzed to determine the cause of web offset and weaving problems.Causes of tension profiles can originate from nonuniform paper properties. For example, by means of case studies, we show that an uneven moisture profile entering the dryer section can lead to a nonuniform tension profile and lateral web movement. Time-varying changes in basis weight or stiffness may also lead to oscillations in the web’s lateral position. These problems were corrected by identifying the root cause and making appropriate changes. In addition, we developed a mathematical model of lateral stability that explains the underlying mechanisms and can be used to understand and correct causes of lateral web instability.
Journal articles
Magazine articles
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022
ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: œ The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. œ Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. œ Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.