Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,511–1,520 of 1,914 results (Duration : 0.011 seconds)
Journal articles
Open Access
Pulping and Papermaking Properties of Managed Second-Growth

Pulping and Papermaking Properties of Managed Second-Growth Softwoods, 1995 Pulping Conference Proceedings

Journal articles
Magazine articles
Open Access
Modeling and parameter optimization of the papermaking processes by using regression tree model and full factorial design, TAPPI Journal February 2021

ABSTRACT: One of the major challenges in the pulp and paper industry is taking advantage of the large amount of data generated through its processes in order to develop models for optimization purposes, mainly in the papermaking, where the current practice for solving optimization problems is the error-proofing method. First, the multiple linear regression technique is applied to find the variables that affect the output pressure controlling the gap of the paper sheet between the rod sizer and spooner sections, which is the main cause of paper breaks. As a measure to determine the predictive capacity of the adjusted model, the coefficient of determination (R2) and s values for the output pressure were considered, while the variance inflation factor was used to identify and eliminate the collinearity problem. Considering the same amount of data available by using machine learning, the regression tree was the best model based on the root mean square error (RSME) and R2. To find the optimal operating conditions using the regression tree model as source of output pressure measurement, a full factorial design was developed. Using an alpha level of 5%, findings show that linear regression and the regression tree model found only four independent variables as significant; thus, the regression tree model demonstrated a clear advantage over the linear regression model alone by improving operating conditions and demonstrating less variability in output pressure. Furthermore, in the present work, it was demonstrated that the adjusted models with good predictive capacity can be used to design noninvasive experiments and obtain.

Journal articles
Open Access
Application of Spherical Hollow Calcium Carbonate Particles

Application of Spherical Hollow Calcium Carbonate Particles as Filler and Coating Pigment, 2002 Coating Conference Proceedings

Journal articles
Open Access
Bridging chemical dosage, mixing quality, and variability in paper sheets, TAPPI JOURNAL May 2015

Bridging chemical dosage, mixing quality, and variability in paper sheets, TAPPI JOURNAL May 2015

Journal articles
Magazine articles
Open Access
Fundamental understanding of removal of liquid thin film trapped between fibers in the paper drying process: A microscopic approach, TAPPI Journal May 2020

ABSTRACT: In the fabrication of paper, a slurry with cellulose fibers and other matter is drained, pressed, and dried. The latter step requires considerable energy consumption. In the structure of wet paper, there are two different types of water: free water and bound water. Free water can be removed most effectively. However, removing bound water consumes a large portion of energy during the process. The focus of this paper is on the intermediate stage of the drying process, from free water toward bound water where the remaining free water is present on the surfaces of the fibers in the form of a liquid film. For simplicity, the drying process considered in this study corresponds to pure convective drying through the paper sheet. The physics of removing a thin liquid film trapped between fibers in the paper drying process is explored. The film is assumed to be incompressible, viscous, and subject to evaporation, thermocapillarity, and surface tension. By using a volume of fluid (VOF) model, the effect of the previously mentioned parameters on drying behavior of the thin film is investigated.

Journal articles
Magazine articles
Open Access
Investigation of the influencing factors in odor emission from wet-end white water, TAPPI Journal October 2020

ABSTRACT: Emission of malodorous gases, such as volatile organic compounds (VOCs), hydrogen sulfide (H2S), and ammonia (NH3) during pulping and papermaking has caused certain harm to the air environment and human health. This paper investigated the influencing factors of odor emission from wet-end white water during the production of bobbin paper in a papermaking mill using old corrugated containers (OCC) as raw material. The concentration of malodorous gases emitted from wet-end white water was determined with pump-suction gas detectors. The results indicated that low temperature could limit the release of malodorous gases from white water. Specifically, no total volatile organic compounds (TVOC), H2S, and NH3 was detected at a temperature of 15°C. The concentrations of malodorous gases were slightly increased when temperature increased to 25°C. When temperature was 55°C, the released concentrations of TVOC, H2S, and NH3 were 22.3 mg/m3, 5.91 mg/m3, and 2.78 mg/m3, respectively. Therefore, the content of malodorous gases significantly increased with the temperature increase. The stirring of white water accelerated the release of malodorous gases, and the release rate sped up as the stirring speed increased. However, the total amount of malodorous gases released were basically the same as the static state. Furthermore, the higher the concentration of white water, the greater the amount of malodorous gases released. The pH had little influence on the TVOC release, whereas it significantly affected the release of H2S and NH3. With the increase of pH value, the released amount of H2S and NH3 gradually decreased. When pH reached 9.0, the release amount of H2S and NH3 was almost zero, proving that an alkaline condition inhibits the release of H2S and NH3.

Journal articles
Open Access
Static Control Methods in Hazardous Areas in Converting Oper

Static Control Methods in Hazardous Areas in Converting Operations, 1994 Polymers, Laminations & Coating Conference Proceedings

Journal articles
Magazine articles
Open Access
Convolutional neural networks enhance pyrolysis gas chromatography mass spectrometry identification of coated papers, TAPPI Journal August 2024

ABSTRACT: In the evolving paper industry, accurate identification of coated paper components is essential for sustainability and recycling efforts. This study employed pyrolysis-gas chromatography mass spectrometry (Py-GCMS) to examine six types of coated paper. A key finding was the minimal interference of the paper substrate with the pyrolysis products of the coatings, ensuring reliable analysis. A one-dimensional convolutional neural network (1D-CNN) was employed to process the extracted ion chromatograms directly, simplifying the workflow and achieving a predictive accuracy of 95.2% in identifying different coating compositions. Additionally, the study high-lighted the importance of selecting an optimal pyrolysis temperature for effective feature extraction in machine learning models. Specific markers for coated papers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene succinate (PBS), polylactic acid (PLA), and waterborne polyacrylates (WP), were identified. This research demonstrates a novel approach to coated paper identification by combining Py-GCMS with machine learning, offering a foundation for further studies in product quality and environmental impact.

Journal articles
Magazine articles
Open Access
Next generation dry strength additives: Leveraging on-site synthesis to develop high performance glyoxalated polyacrylamides, TAPPI Journal January 2024

ABSTRACT: Although glyoxalated polyacrylamides (gPAMs) have been described since the 1950s, the freedom to design new materials based on this chemistry has been limited by practical concerns; namely, a balance between solution concentration and material characteristics must be met to make the economics of gPAM strength additives work for the paper industry. For traditional “delivered” gPAMs, only a very narrow range of polyacrylamide molecular weights and compositions could be considered for glyoxalation. However, the development and successful implementation of automated reactor equipment that allows for the synthesis of gPAMs from glyoxal and polyacrylamide copolymers at the mill, known as “on-site” glyoxalation, obviates the shipping and stability concerns that have traditionally held back gPAM development. As such, on-site generators represent a platform that enables the glyoxalation of materials that would otherwise not have been suitable for use in a traditionally delivered gPAM product. These on-site generators therefore open new avenues for polymer design to allow for the creation of the next generation of strength additives. By leveraging the synthetic freedom of the on-site generators, a suite of high performance gPAMs has been designed, yielding materials that provide both exceptional strength and drainage performance in poor quality furnishes.

Magazine articles
Open Access
Practical sheeting and packaging methods for soho market, TAPPI JOURNAL, April 1999, Vol. 82(4)

Practical sheeting and packaging methods for soho market, TAPPI JOURNAL, April 1999, Vol. 82(4)