Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,531–1,540 of 1,687 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Considerations in managing wastewater odor at pulp and paper operations, TAPPI Journal March 2022

ABSTRACT: Many pulp and paper mills are, at least periodically, faced with the release of odors that can migrate offsite and be considered a nuisance by nearby residents. At chemical pulp mills, perceptible odors associated with reduced sulfur compounds (RSCs) are common, many of which are highly perceptible owing to their low odor thresholds. As releases of RSCs and other odorous substances from production processes are progressively controlled, the proportional contribution from wastewater treatment systems to areal odors can increase. This review paper summarizes important fundamentals of odor generation, source identification, and control. Common odorous substances are identified, and mechanisms for their generation are summarized. Approaches for measuring odorous substances are detailed to enable more effective management, and various odor control strategies are discussed.

Journal articles
Magazine articles
Open Access
Contrasting underlying mechanisms of different barrier coating types, TAPPI Journal January 2018

Contrasting underlying mechanisms of different barrier coating types, TAPPI Journal January 2018

Journal articles
Magazine articles
Open Access
Root cause analysis of cationic polymer additive efficiency decline in virgin and recycle containerboard mills, TAPPI Journal January 2020

ABSTRACT: It is well known that retention, drainage and strength polymers struggle to perform (if at all) in virgin containerboard mills. In-depth studies have been undertaken in this area for more than seven years, investigating the issue from all directions. A key finding of this work is that soluble lignin is detrimental to chemical efficiency. A strong correlation exists between decreased chemical efficiency and high soluble lignin. Both recycled systems and virgin systems have been studied, and this correlation holds true regardless of furnish. The primary area of concern is virgin container-board, because these mills tend to have the highest lignin levels. Some highly closed recycled mills can also build elevated lignin levels that can negatively affect chemical efficiency.

Journal articles
Magazine articles
Open Access
Numerical analysis of slot die coating of nanocellulosic materials, TAPPI Journal November 2020

ABSTRACT: Nanocellulosic coatings as a food packaging material are of commercial interest due to their nontoxic nature, renewability, and excellent barrier properties. Complex shear-thinning rheology poses challenges in designing and sizing equipment to pump, mix, and process the suspension and actual coating process. This study aims to determine the effectiveness of computational fluid dynamics (CFD) in predicting nanocellulosic suspension flow in light of existing rheological data. We employ and compare three distinct rheological models to characterize the rheology and flow of nanocellulose suspensions through a slot die coater, where the model parame-ters are established from existing slot rheometry measurements. A volume-of-fluid (VoF) based finite volume meth-od is employed to simulate the flow in a slot die operated in an unconventional metering mode. Results with the Casson model predict the presence of unyielded regions in the flow, which was not captured using the power law model. These stagnation regions will incur coatability issues stemming from flow intermittencies and lead to poten-tial defects in the coating layer, including fracture. The results suggest that a rheological model that includes yield stress should be considered while modeling such flows. A need for better rheological data to model nanocellulosic flows, especially at high consistencies and shear rates, is also highlighted.

Journal articles
Magazine articles
Open Access
Orifice geometry as a tool for evaluating extensional flow resistance of barrier coating colors, TAPPI Journal November 2024

ABSTRACT: Knowledge of extensional flow behavior of coating colors can be beneficial for improving runnability and eliminating defects in various coating processes. The current work evaluates the use of an orifice geometry attached to a commercial capillary viscometer as a tool to obtain extensional flow properties of barrier coating dispersions. By measuring the pressure drop across the orifice as a function of flow velocity, the method presents the flow resistance as Euler number at industrially relevant high deformation rates. The results agree with the earlier results obtained with a capillary entrance pressure loss technique. The type of polymer additive is shown to control the extensional flow resistance, with high molecular weight linear flexible polymers such as polyethylene oxide (PEO) and polyvinyl alcohol (PVOH) having highest impact. The orifice method offers advantages over other approaches, including the need for only a small sample amount, ease of measurement, and access to high deformation rates.

Journal articles
Magazine articles
Open Access
Editorial: The road to sustainable packaging: New research on aqueous barrier coating, TAPPI Journal November 2022

Authors: Joel C. Panek and Peter W. Hart | ABSTRACT: This TAPPI Journal Special Coating Issue looks at hot topic research being done in coatings for paper and paperboard. We can feel the “earth shifting” in paper and paper-board packaging due to the strong call by consumers and brand owners for more sustainable and environmentally friendly options. This is the first TAPPI Journal Special Coating Issue to highlight efforts within the paper coating community to produce more sustainable packaging.

Journal articles
Magazine articles
Open Access
Determining operating variables that impact internal fiber bonding using Wedge statistical analysis methods, TAPPI Journal November 2021

ABSTRACT: In this study, Wedge statistical analysis tools were used to collect, collate, clean up, plot, and analyze several years of operational data from a commercial paper machine. The z-direction tensile (ZDT) and Scott Bond tests were chosen as representative of fiber bond strength. After analyzing thousands of operational parameters, the ones with the most significant impact upon ZDT involved starch application method, starch penetration, and the amount of starch applied. Scott bond was found to be significantly impacted by formation and refining. Final calendering of the paper web has also shown an impact on internal fiber bonding.

Journal articles
Open Access
Editorial: The emergence of AI in additives development, TAPPI Journal March 2025

ABSTRACT: The continuing evolution of artificial intelligence (AI) and its penetration into the core of the world of papermaking were undeniable at TAPPICon 2024 and especially within the content presented and sponsored by TAPPI’s Papermaking Additives Committee. On one side of the spectrum, there were traditional methods of chemical development and application grounded in natural intelligence, while on the other, there was the emerging presence of algorithmic decision-making and machine learning within the development cycle. The latter technology is brimming with the kind of promise that could reshape how additives are conceived, developed, and applied, turning what was once a matter of trial and error into something far more precise and previously out of reach.

Journal articles
Magazine articles
Open Access
Evaluation of rice straw for purification of lovastatin, TAPPI Journal November 2021

ABSTRACT: Cholesterol synthesis in the human body can be catalyzed by the coenzyme HMG-CoA reductase, and lovastatin, a key enzyme inhibitor, can reduce hypercholesterolemia. Lovastatin can be obtained as a secondary metabolite of Aspergillus terreus ATCC 20542. In this study, rice straw of lignocellulose was used in aeration and agitation bath fermentation in a 1-L flask, and a maximal crude extraction rate of 473 mg/L lovastatin was obtained. The crude extract was treated with silica gel (230–400 mesh) column chromatography. Ethyl acetate/ethanol (95%) was used as the mobile phase, and isolation was performed through elution with various ethyl acetate/ethanol ratios. The highest production rate of 153 mg/L was achieved with ethyl acetate/ethanol in a ratio of 8:2. The lovastatin gained from the crude extract was added to 12 fractions treated with 0.001 N alkali, and acetone was then added. After 24 h of recrystallization at 4°C, the extract underwent high-performance liquid chromatography. The purity had increased from 25% to 84.6%, and the recovery rate was 65.2%.

Journal articles
Magazine articles
Open Access
Root cause analysis of cationic polymer additive efficiency decline in virgin and recycle containerboard mills, TAPPI Journal January 2020

ABSTRACT: It is well known that retention, drainage and strength polymers struggle to perform (if at all) in virgin containerboard mills. In-depth studies have been undertaken in this area for more than seven years, investigating the issue from all directions. A key finding of this work is that soluble lignin is detrimental to chemical efficiency. A strong correlation exists between decreased chemical efficiency and high soluble lignin. Both recycled systems and virgin systems have been studied, and this correlation holds true regardless of furnish. The primary area of concern is virgin container-board, because these mills tend to have the highest lignin levels. Some highly closed recycled mills can also build elevated lignin levels that can negatively affect chemical efficiency.