Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,561–1,570 of 1,699 results (Duration : 0.009 seconds)
Journal articles
Magazine articles
Open Access
Measurement and control of extensional viscosity in barrier coating dispersions, TAPPI Journal November 2023

ABSTRACT: This study aimed to understand the effect of various rheological additives on the extensional viscosity of barrier coating dispersions, as well as to understand the role extensional viscosity plays in stabilizing a liquid curtain. The apparent extensional viscosity was measured using two devices that create accelerating flows: a capillary viscometer and an orifice rheometer. Additives tested include several polyvinyl alcohols, a high molecular weight polyethylene oxide, and carboxymethylcellulose. Extensional viscosity plays a significant role in stabilizing a liquid curtain, as it slows down hole expansion and prevents impurities and disturbances from causing holes in the first place. Some of the additives could substantially increase the extensional viscosity of the dispersions without increasing the shear viscosity outside the typical range of processability for a curtain coater. Some of the additives exhibited coil-stretch transition, meaning they start increasing extensional viscosity above a certain extension rate. Polymers with low chain lengths exhibited finite extensibility, which indicates the polymer chain has fully extended and cannot provide further extensional viscosity, even though the extending force is increased. Polymeric additives with stiff or branched chains significantly raised shear viscosity without increasing extensional viscosity. Both methods could reliably measure extensional viscosity in curtain coating barrier dispersions.

Journal articles
Magazine articles
Open Access
The evolution of reel statistical methods, TAPPI Journal June 2019

ABSTRACT: Multiple statistical methods for calculating the variance partition analysis (VPA) of reel data have existed for decades. In the paper industry, VPA is also commonly known as reel statistics. VPA commonly consists of total variance (TOT) that is then divided into three components: cross direction (CD), machine direction (MD), and residual (RES). A common mathematical procedure is referred to as ANOVA (analysis of variance). TAPPI Standard Test Method T 545 “Cross-machine grammage profile measurement (gravimetric method)” addresses paper testing and includes the ANOVA equations that have also been used to analyze scanning data.In the 1990s, TAPPI published TIP 1101-01 “Calculation and partitioning of variance using paper machine scanning sensor measurements,” which contained simple formulas that were easy to implement and could be used by a nov-ice to generate statistics on a spreadsheet. All involved quality control system (QCS) suppliers agreed to support this common method in their QCS. TIP 1101 was recently revised, and this paper concerns the analysis of data collected from a scanning sensor in a QCS and the creation of a common method for the calculation of reel statistics by TAPPI’s Process Control Division.

Journal articles
Magazine articles
Open Access
Impact of fiber structure on edge-wicking of highly-sized paperboard, TAPPI JOURNAL August 2018

Impact of fiber structure on edge-wicking of highly-sized paperboard, TAPPI JOURNAL August 2018

Journal articles
Magazine articles
Open Access
Water chemistry challenges in pulping and papermaking • fundamentals and practical insights: Part 2: Conductivity, charge, and hardness, TAPPI Journal June 2023

ABSTRACT: Although water is essential to the papermaking process, papermakers often overlook its importance and focus on fibers, fillers, and chemical additives. A better understanding of water properties and chemical interactions associated with water at the wet end leads to a sound foundation for high-quality paper production and smooth operation. Water is an excellent solvent for ionic substances, both organic and inorganic. These substances contribute to system conductivity, charge, and hardness and significantly impact the papermaking process. Part 1 of this paper, published in TAPPI J. 21(6): 313(2022), discussed fundamental water properties, water chemistry, and the impact of pH on pulping and papermaking operations. In this paper, we review definitions, sources, and the typical symptoms of the effect of conductivity, charge, and hardness on the productivity of the papermaking process. Sources of conductivity, charge, and hardness impacting these factors, measurement methods, and available correction strategies for their control are also discussed.

Journal articles
Magazine articles
Open Access
Evaluation of folding effects on coating damage, TAPPI Journal November 2024

ABSTRACT: Barrier coatings on paperboard need to maintain integrity during converting and end-use for effective barrier performance. Folding is one of the most common deformations during converting; however, factors that affect damage during folding are not well defined. This is partly because methods to fold specimens and characterize damage are not standardized and the results are generally not transferable. In this work, we describe a method to fold paper specimens precisely and reproducibly. The keys to folding include using a defined geometry and controlled deformation. Multiple methods can be used to quantify damage; in this case, we use differences in permeability as a measure of how the coating becomes more open. Damage is sensitive to the degree of compression after the initial folding. Using a shim for support provides a defined amount of compression and minimizes the sensitivity to the applied pressure.

Journal articles
Magazine articles
Open Access
Calender barring review with experiences, TAPPI Journal July 2022

ABSTRACT: Excessive calender vibration affects all styles of calender stacks from single to multi-nip, all hard rolls, or a combination of hard and soft rolls. Calender vibration can be forced vibration or self-excited vibration. Forced vibration occurs at the first few harmonics of the calender roll rotational speeds and is caused by imbalance, misalignment, eccentricity, etc. Self-excited vibration, the focus of this paper, occurs at higher frequencies. Feedback paths for self-excited vibration must be understood in order to ameliorate the problem. This is presented in the context of the historical development of the theory of self-excited feedback mechanisms, followed by a survey of self-excited feedback mechanisms in various types of calender stacks. Methodology to determine which feed-back path is present and techniques to control or eliminate the resulting vibration follow. To obtain a flavor of the types of problems faced and practical remedial actions, a variety of experiences with barring issues are provided.

Journal articles
Magazine articles
Open Access
On increasing wet-web strength with adhesive polymers, TAPPI JOURNAL February 2020

ABSTRACT: Fiber-fiber adhesion, called “bonding” in the old paper physics literature, is a critical component of the overall strength of dry paper. With freshly formed very wet pulp fiber webs, all evidence suggests there are no fiber-fiber crossings with significant adhesive joint strength. With water removal, a point will be reached where fiber-fiber adhesion starts to contribute to the overall wet-web strength.The literature reveals very few examples of polymers that increase fiber-fiber joint strength in freshly formed webs. Here, we summarize the literature and explain why it is so difficult to promote fiber-fiber wet adhesion with polymers. Nevertheless, ongoing research in areas as diverse as tissue engineering scaffolds and biomimetic adhesives gives clues to future developments. Advances in paper machine engineering have lessened the importance of wet-web strength. By contrast, a critical issue in many of the evolving nanocellulose technologies is the strength of objects first formed by aqueous processing, the green strength—the strength of wet bodies before drying. For exam-ple, 3-D printed nanocellulose objects and ultralow density cellulosic aerogels can be destroyed by capillary forces during drying. There is a need for adhesives that strengthen freshly formed, wet lignocellulosic joints.

Journal articles
Magazine articles
Open Access
Effects of phosphogypsum whiskers modification with calcium stearate and their impacts on properties of bleached softwood paper sheets, TAPPI Journal September 2021

ABSTRACT: By combining the structural properties and characteristics of phosphogypsum whiskers, a preliminary study on the modification of phosphogypsum whiskers and their application in papermaking was carried out. The effects of reaction temperature, reaction time, and reaction concentration on the solubility and retention of modified phosphogypsum whiskers and the effects of phosphogypsum whiskers on the physical properties of paper under different modified conditions were explored. The research results show that, after the phosphogypsum whiskers are modified with calcium stearate, a coating layer will be formed on the surface of the whiskers, which effectively reduces the solubility of the phosphogypsum whiskers. The best modification conditions are: the amount of calcium stearate relative to the absolute dry mass of the phosphogypsum whisker is 2.00%; the modification time is 30 min, and the modification temperature is 60°C. The use of modified phosphogypsum whiskers for paper filling will slightly reduce the whiteness, folding resistance, burst resistance, and tensile strength of the paper, but the tearing degree and retention of the filler will be increased to some extent.

Journal articles
Magazine articles
Open Access
Three-dimensional pore structure visualization and character

Three-dimensional pore structure visualization and characterization of paper using X-ray computed tomography, TAPPI JOURNAL September 2017

Journal articles
Magazine articles
Open Access
Critical parameters for tall oil separation I: The importance of ration of fatty acids to rosin acids, TAPPI Journal September 2019

ABSTRACT: Tall oil is a valuable byproduct in chemical pulping of wood, and its fractions have a large spectrum of applications as chemical precursors, detergents, and fuel. High recovery of tall oil is important for the economic and environmental profile of chemical pulp mills. The purpose of this study was to investigate critical parameters of tall oil separation from black liquor. To investigate this in a controlled way, we developed a model test system using a “synthetic” black liquor (active cooking chemicals OH- and HS- ions), a complete process for soap skimming, and determination of recovered tall oil based on solvent extraction and colorimetric analysis, with good reproducibility. We used the developed system to study the effect of the ratio of fatty acids to rosin acids on tall oil separation. When high amounts of rosin acids were present, tall oil recovery was low, while high content of fatty acids above 60% significantly promoted tall oil separation. Therefore, manipulating the content of fatty acids in black liquor before the soap skimming step can significantly affect the tall oil solubility, and hence its separation. The findings open up chemical ways to improve the tall oil yield.