Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,571–1,580 of 1,698 results (Duration : 0.011 seconds)
Journal articles
Magazine articles
Open Access
Continuous tannin extraction by use of screw reactor, TAPPI Journal February 2021

ABSTRACT: A pilot-size screw reactor (extraction unit) was used for tannin extraction of spruce. Yield of the same magnitude or better was obtained when comparing a screw reactor with batch reactors. A longer presoaking time in water seemed to be better than a short one for obtaining higher yield. A higher yield is obtained with lower dry-water ratio, which suggests that the internal diffusion in bark does not determine mass transfer as much as is the case without presoaking of bark. The higher dry-water ratio decreased the yield. The prior soaking of the bark also minimized the mechanical reactor feeding problems (clogging). The benefits of a screw reactor likely are that run time changes for different process conditions are flexible; it simplifies design and construction of an industrial unit for tannin production; and it saves space because of the need for fewer and smaller intermediate storage tanks.

Journal articles
Magazine articles
Open Access
New opportunities in the paper and nonwovens industries with foam-assisted web forming and chemical application, TAPPI Journal January 2023

ABSTRACT: Foam-assisted web forming and chemical application technologies have great potential to improve manufacturing efficiency and product quality in the paper and nonwovens industries. In this study, the benefits of foam forming and foam-assisted application of chemicals were demonstrated in a pilot machine trial. Uniform high-bulk webs of unrefined bleached softwood kraft pulp (BSKP) and viscose fibers were manufactured by foam forming. It was shown that foam formed low-grammage and high-bulk viscose fiber webs can be strengthened by foam-assisted application of latex onto the wet web. Correspondingly, foam-assisted application of carboxymethyl cellulose (CMC) and anionic polyacrylamide (A-PAM) improved the strength of the foam formed low-grammage and high-bulk BSKP web. Overall, the pilot machine results indicated that material cost savings could be achieved and a high-performance product could be manufactured with foam-based technologies.

Journal articles
Magazine articles
Open Access
Case study: Paper mill power plant optimization—balancing steam venting with mill demand, TAPPI Journal June 2020

ABSTRACT: Most Power departments are tasked with generating steam to support mill wide operations, generate electricity, and reduce operating costs. To accomplish these tasks, power boilers generate high pressure steam that is reduced to intermediate and low pressures for process utilization in the mill by means of steam turbine generator extraction or pressure reducing valves. The most economical method to reduce steam pressure is the use of steam turbine generators, as electricity is generated from the steam when it is reduced in pressure. Electricity that is produced by these generators provides a substantial financial benefit and helps offset overall operational costs. To achieve tangible financial gains, the mill must evaluate the overall cost of steam production and the price of electricity.The current work provides a case study of power plant optimization that evaluated electricity production and steam production costs balanced with mill steam demand. Process and cost optimization led to a significant reduc-tion in low pressure steam venting, resulting in reduced fuel consumption and reduced operating cost.

Journal articles
Magazine articles
Open Access
Dynamic compression characteristics of fiber-reinforced shoe press belts, TAPPI Journal April 2025

ABSTRACT: Shoe press belts contribute significantly to the overall dewatering performance in the press section of a paper machine. Within the shoe press nip, the press belt faces a dynamic and multidimensional load that mainly leads to a compression of the structure. As this will cause a loss in void volume, knowledge of the dynamic compression characteristics of shoe press belts is crucial for optimized dewatering. A novel method was developed to examine the dynamic compression characteristics of grooved polyurethane press belts. Therefore, an experimental setup allowing realistic boundary conditions to test specimens was placed in a servo-hydraulic testing machine. Press belt specimens with different matrix material formulations and groove patterns were tested under varying load rates equivalent to different paper machine operational speeds. The results showed an evident sensitivity of the dynamic compression stiffness to the operational speed of the paper machine. This behavior was seen to be more sensitive to changes in the matrix material formulation than to adaptions of the groove pattern. As a result, the compression of the press belt within a shoe press nip is not only influenced by the peak pressure within the shoe press nip but also depends on the operational speed of the paper machine.

Journal articles
Open Access
Editorial: The emergence of AI in additives development, TAPPI Journal March 2025

ABSTRACT: The continuing evolution of artificial intelligence (AI) and its penetration into the core of the world of papermaking were undeniable at TAPPICon 2024 and especially within the content presented and sponsored by TAPPI’s Papermaking Additives Committee. On one side of the spectrum, there were traditional methods of chemical development and application grounded in natural intelligence, while on the other, there was the emerging presence of algorithmic decision-making and machine learning within the development cycle. The latter technology is brimming with the kind of promise that could reshape how additives are conceived, developed, and applied, turning what was once a matter of trial and error into something far more precise and previously out of reach.

Journal articles
Magazine articles
Open Access
Critical parameters for tall oil separation I: The importance of ration of fatty acids to rosin acids, TAPPI Journal September 2019

ABSTRACT: Tall oil is a valuable byproduct in chemical pulping of wood, and its fractions have a large spectrum of applications as chemical precursors, detergents, and fuel. High recovery of tall oil is important for the economic and environmental profile of chemical pulp mills. The purpose of this study was to investigate critical parameters of tall oil separation from black liquor. To investigate this in a controlled way, we developed a model test system using a “synthetic” black liquor (active cooking chemicals OH- and HS- ions), a complete process for soap skimming, and determination of recovered tall oil based on solvent extraction and colorimetric analysis, with good reproducibility. We used the developed system to study the effect of the ratio of fatty acids to rosin acids on tall oil separation. When high amounts of rosin acids were present, tall oil recovery was low, while high content of fatty acids above 60% significantly promoted tall oil separation. Therefore, manipulating the content of fatty acids in black liquor before the soap skimming step can significantly affect the tall oil solubility, and hence its separation. The findings open up chemical ways to improve the tall oil yield.

Journal articles
Magazine articles
Open Access
A new technique for the measurement of show-through mottle of fine paper, TAPPI Journal September 2019

ABSTRACT: Mottling within print-through and show-through is caused by the variability of the local optical properties of the sheet. This mottling is visually disturbing and a mark of poor paper quality. The ability to predict print-through mottle of printed paper by measuring show-through mottle on the unprinted sheet would be a valuable asset for paper machine control.We examined the relationship between print-through mottle and show-through mottle. We worked with nine samples of 60 lb. uncoated fine paper (90 g/m2), from various North American paper companies, that were printed on an offset press, 400K (400% Black), on both sides. A show-through mottle instrumental determination technique was developed using an existing Fast Fourier Transform-based algorithm. The nine samples examined were ranked similarly by the visual evaluation of print-through mottle and by the instrumental determination of show-through mottle. We thus established that show-through on the unprinted sheet can be used as a reliable predictor of print-through, therefore saving time and money for papermakers. We also found a significant two-sidedness in show-through for some of the samples.

Journal articles
Magazine articles
Open Access
Evaluation of folding effects on coating damage, TAPPI Journal November 2024

ABSTRACT: Barrier coatings on paperboard need to maintain integrity during converting and end-use for effective barrier performance. Folding is one of the most common deformations during converting; however, factors that affect damage during folding are not well defined. This is partly because methods to fold specimens and characterize damage are not standardized and the results are generally not transferable. In this work, we describe a method to fold paper specimens precisely and reproducibly. The keys to folding include using a defined geometry and controlled deformation. Multiple methods can be used to quantify damage; in this case, we use differences in permeability as a measure of how the coating becomes more open. Damage is sensitive to the degree of compression after the initial folding. Using a shim for support provides a defined amount of compression and minimizes the sensitivity to the applied pressure.

Journal articles
Magazine articles
Open Access
On increasing wet-web strength with adhesive polymers, TAPPI JOURNAL February 2020

ABSTRACT: Fiber-fiber adhesion, called “bonding” in the old paper physics literature, is a critical component of the overall strength of dry paper. With freshly formed very wet pulp fiber webs, all evidence suggests there are no fiber-fiber crossings with significant adhesive joint strength. With water removal, a point will be reached where fiber-fiber adhesion starts to contribute to the overall wet-web strength.The literature reveals very few examples of polymers that increase fiber-fiber joint strength in freshly formed webs. Here, we summarize the literature and explain why it is so difficult to promote fiber-fiber wet adhesion with polymers. Nevertheless, ongoing research in areas as diverse as tissue engineering scaffolds and biomimetic adhesives gives clues to future developments. Advances in paper machine engineering have lessened the importance of wet-web strength. By contrast, a critical issue in many of the evolving nanocellulose technologies is the strength of objects first formed by aqueous processing, the green strength—the strength of wet bodies before drying. For exam-ple, 3-D printed nanocellulose objects and ultralow density cellulosic aerogels can be destroyed by capillary forces during drying. There is a need for adhesives that strengthen freshly formed, wet lignocellulosic joints.

Journal articles
Magazine articles
Open Access
Effects of phosphogypsum whiskers modification with calcium stearate and their impacts on properties of bleached softwood paper sheets, TAPPI Journal September 2021

ABSTRACT: By combining the structural properties and characteristics of phosphogypsum whiskers, a preliminary study on the modification of phosphogypsum whiskers and their application in papermaking was carried out. The effects of reaction temperature, reaction time, and reaction concentration on the solubility and retention of modified phosphogypsum whiskers and the effects of phosphogypsum whiskers on the physical properties of paper under different modified conditions were explored. The research results show that, after the phosphogypsum whiskers are modified with calcium stearate, a coating layer will be formed on the surface of the whiskers, which effectively reduces the solubility of the phosphogypsum whiskers. The best modification conditions are: the amount of calcium stearate relative to the absolute dry mass of the phosphogypsum whisker is 2.00%; the modification time is 30 min, and the modification temperature is 60°C. The use of modified phosphogypsum whiskers for paper filling will slightly reduce the whiteness, folding resistance, burst resistance, and tensile strength of the paper, but the tearing degree and retention of the filler will be increased to some extent.