Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Control of continuous digester kappa number using generalized model predictive control, TAPPI Journal September 2024
ABSTRACT: Kappa number variability at the digester impacts pulp yield, physical strength properties, and lignin content for downstream delignification processing. Regulation of the digester kappa number is therefore of great importance to the pulp and paper industry. In this work, an industrial application of model-based predictive control (MPC), based on generalized prediction control, was developed for kappa number feedback control and applied to a dual vessel continuous digester located in Western Canada. The problem was complicated by the need to apply heat at multiple locations in the cook. In this study, the problem was reduced from a multiple to a single input system by identifying three potential single variable permutations for temperature adjustment. In the end, a coordinated approach to the heaters was adopted. The process was perturbed and modeled as a simple first order plus dead time model and implemented in generalized predictive control (GPC). The GPC was then configured to be equivalent to Dahlin’s controller, which reduced tuning parameterization to a single closed loop time constant. The controller was then tuned based on robustness towards a worst-case dead time mismatch of 50%. The control held the mean value of the kappa number close to the setpoint, and a 40% reduction in the kappa number’s standard deviation was achieved. Different kappa number trials were run, and the average fiberline yield for each period was evaluated. Trial results suggested yield gains of 0.3%•0.5% were possible for each 1 kappa number target increase.
Journal articles
Magazine articles
Study on the effect of aluminum diethyl phosphinate in synergy with ammonium polyphosphate on the flame retardancy of cellulose paper, TAPPI Journal April 2025
ABSTRACT: This paper involved the synergistic incorporation of ammonium polyphosphate (APP) and diethyl aluminum phosphinate (AlPi) as flame-retardant fillers for producing flame-retardant paper. The research revealed that APPs were square particles with a smooth surface, and their solubility was 0.29 g/100 mL at 20°C, which increased to 4.12 g/100 mL at 60°C. The surfaces of AlPis were rough and irregular. The solubility of AlPi was 0.023 g/100 mL at 20°C, and the solubility remained stable when the temperature increased. The addition of AlPi had a minor influence on the pulp beating degree. The tensile strength of kraft/APP/AlPi decreased with the increase of the AlPi addition. For a paper with 20 wt% APP and 0 wt% AlPi, the limiting oxygen index (LOI) value was 27.2%, and it burned completely at the eighth second during vertical combustion. When the AlPi additive content increased to 20 wt%, its LOI value increased to 32.2%, and the vertical combustion self-extinguished as soon as the flame was removed. Scanning electron microscopy (SEM) showed that the char residue of the kraft/APP/AlPi had a more complete fiber network structure than that of kraft/APP. The Raman spectroscopy indicated that the area ratio of the D (amorphous phase; disordered graphite vibration) band to the G (crystal phase; graphite carbon vibration) band (ID/ IG) ratio of kraft/APP/AlPi was lower than that of kraft/APP, meaning that the graphitization degree of the char residue of kraft/APP/AlPi was higher than that of kraft/APP, which indicated the kraft/APP/AlPi had better flame retardancy.
Journal articles
In-situ process monitoring in deep-drawing of paper using partially transparent tools, TAPPI Journal August 2025
ABSTRACT: The production of three-dimensionally formed packaging from paper by deep drawing usually leads to the occurrence of wrinkles, which result from the high tangential compressive stresses in the flange area and the limited flowability of the material. Wrinkles, although mostly tolerated in industry, end in both a reduced visual appearance and a reduction in usability for packaging, as with, for example, when gas-tightness is required. Previous research efforts have been limited to determining the wrinkle distribution after completion of forming and removal of the formed part. Consequently, the possibility of understanding the sequence of formation of individual wrinkles in the inhomogeneous material is lost. To remedy this situation, a method for local in-situ process monitoring is presented. Using a transparent die and an industrial camera, the flange area can be observed during the forming process. An image processing algorithm is applied to analyze the local development of the deep drawing process from the continuously recorded image data. The method described can be used to analyze the draw-in behavior and wrinkle formation locally and continuously over the drawing depth. The blank holder force influences the draw-in and the wrinkle pattern both locally and throughout the drawing process. A more precise understanding of the wrinkle formation will allow for more efficient process control in the future.
Journal articles
Colloidal silica and its effects during formation of paper sheets in the presence of nanofibrillated cellulose, cationic starch, and cationic acrylamide copolymer, TAPPI Journal May 2025
ABSTRACT: This work considered effects of colloidal silica addition during laboratory preparation of paper sheets containing nanofibrillated cellulose (NFC) that had been pretreated with cationic starch. The emphasis was on process performance issues, including dewatering rates, fine particle retention, and the extent of fiber flocculation. In addition, micrographs were obtained to show what was happening to the NFC upon treatments with cationic starch and subsequent application of hydrodynamic shear. Contrasting results were obtained, depending on the charge density of the cationic starch. Pretreatment of the NFC with a high charge density cationic starch (degree of substitution 0.2) resulted in strong interactions with the colloidal silica, enhancing the dewatering rate and contributing to fine-particle retention. The medium charge cationic starch pretreatment led to effects suggesting a bridging mechanism of action, and subsequent colloidal silica had no significant effect on dewatering. Treatment of that system with a high level of colloidal silica (0.2%) resulted in lower retention. In general, the final colloidal silica treatments tended to decrease the level of flocculation in the suspensions, giving more uniform handsheets. Mechanisms, some of them related to the clustering and dispersion of cationic starch-treated NFC, were proposed to account for the observed effects.
Journal articles
Magazine articles
Cationic emulsions of maleic anhydride derivatives of oleic and abietic acid for hydrophobic sizing of paper, TAPPI Journal 2020
ABSTRACT: Ordinary rosin sizing agents are mixtures of resin acids that include abietic acid and related compounds obtained from softwoods such as pine. Fatty acids, which are another byproduct of the kraft pulping of soft-wood species, also may have hydrophobic effects, but their use as sizing agents has seldom been considered. In the current study, abietic acid and oleic acid, in the absence of other components, were first modified by reaction with maleic acid anhydride. Then, the maleated derivatives (maleated oleic acid [MOA] and maleated abietic acid [MAA]), which were emulsified with cationic starch at the 1:1 and 3:2 ratio, respectively, were added to fiber furnish containing aluminum sulfate (papermaker’s alum). The prepared sheets were dried with a rotating drum on one side at 100°C at low pressure to cure the sizing agents. The chemical, optical strength, and absorption properties were measured. The presence of the sizing material was confirmed using time of flight secondary ion mass spectrometry (ToF-SIMS), and the retention of the sizing agent on fibers was supported by evidence of hydrocarbons on the paper surface. In addition to achieving sufficient water resistance features with MAA, a lesser hydrophobic character was obtained when using MOA. Compared to commercial applications, relatively large amounts of sizing agent were used to obtain a sufficient sizing degree. The MOA required 5% addition to achieve a similar sizing degree as MAA at the 2% level. The sizing treatments also resulted in substantial increases in tensile index value. Since cationic starch was used in the formulation of the sizing agents, the increase in tensile index may have been due to the influence of cationic starch. Contributions to paper strength from a combination of ionic complexation and mutual association of hydrophobic groups is also proposed. Depending on the amount of sizing agent, the yellowness increased, especially when sizing with MOA.
Journal articles
Effect of xylan on the mechanical performance of softwood kraft pulp 2D papers and 3D foams, TAPPI Journal March 2025
ABSTRACT: Pulp fibers are paramount in paper products and have lately seen emerging use in fiber foams. Xylan, an integral component in pulp fibers, is known to contribute to paper strength, but its effect on the strength of pulp fiber foams remains less explored. In this study, we investigate the role of xylan in both 2D handsheets and 3D foams. For a softwood kraft pulp, we enzymatically removed 1% from pulp fibers and added 3% xylan to them by adsorption, corresponding to approximately a decrease of a tenth and an increase of a third of the total xylan content. The mechanical properties of 2D fiber networks, i.e., handsheets, made using the xylan-enriched pulp improved, particularly regarding tensile strength and Young’s modulus; however, the decrease in mechanical properties of handsheets made from enzymatically- treated xylan-depleted pulp was more pronounced. In 3D networks • pulp fiber foams, much less fiber-fiber contacts formed, and thus the mechanical properties were not as much influenced by removal of xylan. Furthermore, the presence of the required surfactant on the fibers, acting as debonding agent, overshadows any positive effect xylan might have on fiber-fiber bonding. We propose that the improved mechanical properties for the sheets result from a combination of an increased number of fiber-fiber bonds and higher sheet density, while the deterioration in mechanical properties of handsheets comprising enzymatically-treated fibers is caused by the opposite effect.
Journal articles
Magazine articles
Predicting strength characteristics of paper in real time using process parameters, TAPPI Journal March 2022
ABSTRACT: Online paper strength testing methods are currently unavailable, and papermakers have to wait for manufacture of a complete reel to assess quality. The current methodology is to test a very small sample of data (less than 0.005%) of the reel to confirm that the paper meets the specifications. This paper attempts to predict paper properties on a running paper machine so that papermakers can see the test values predicted in real time while changing various process parameters. This study was conducted at a recycled containerboard mill in Chicago using the multivariate analysis method. The program provided by Braincube was used to identify all parameters that affect strength characteristics. Nearly 1600 parameters were analyzed using a regression model to identify the major parameters that can help to predict sheet strength characteristics. The coefficients from the regression model were used with real-time data to predict sheet strength characteristics. Comparing the prediction with test results showed good correlation (95% in some cases). The process parameters identified related well to the papermaking process, thereby validating the model. If this method is used, it may be possible to predict various elastic moduli (E11, E12, E22, etc.) in the future as the next step, rather than the traditional single number “strength” tests used in the containerboard industry, such as ring crush test (RCT), corrugating medium test (CMT), and short-span compression strength test.
Journal articles
Magazine articles
Effects of phosphogypsum whiskers modification with calcium stearate and their impacts on properties of bleached softwood paper sheets, TAPPI Journal September 2021
ABSTRACT: By combining the structural properties and characteristics of phosphogypsum whiskers, a preliminary study on the modification of phosphogypsum whiskers and their application in papermaking was carried out. The effects of reaction temperature, reaction time, and reaction concentration on the solubility and retention of modified phosphogypsum whiskers and the effects of phosphogypsum whiskers on the physical properties of paper under different modified conditions were explored. The research results show that, after the phosphogypsum whiskers are modified with calcium stearate, a coating layer will be formed on the surface of the whiskers, which effectively reduces the solubility of the phosphogypsum whiskers. The best modification conditions are: the amount of calcium stearate relative to the absolute dry mass of the phosphogypsum whisker is 2.00%; the modification time is 30 min, and the modification temperature is 60°C. The use of modified phosphogypsum whiskers for paper filling will slightly reduce the whiteness, folding resistance, burst resistance, and tensile strength of the paper, but the tearing degree and retention of the filler will be increased to some extent.
Journal articles
Magazine articles
Rheological characteristics of platy kaolin, TAPPI JOURNAL September 2019
ABSTRACT: Platy kaolin can provide significant value in the coating of paper and paperboard. It can be used in multiple applications and can provide benefits such as titanium dioxide (TiO2) extension, smoothness improvement, improved print gloss or ink set rates, calendering intensity reduction, and improved barrier properties. It is not a pigment that can be simply substituted for traditional hydrous kaolin without some adjustment to the coating formulation. These adjustments can be as simple as reducing solids, but may require binder changes as well. The coater setup may need to be adjusted because of the unique rheological behaviors these pigments exhibit.The unique rheological characteristics of platy kaolin are explored here. Measurements of the water retention of platy kaolin containing coatings confirm that water retention is not reduced in comparison to more blocky kaolin pigments, despite the lower coating solids at which they need to be run. This means that the rheological characteristics are the most important in understanding the runnability. An extensive analysis reveals some unique behaviors that need to be understood when utilizing these materials. Viscoelastic measurements indicate that, for this binder system, Tan d is mainly a function of solids. This may explain how weeping is initiated on a blade coater. The degree of shear thinning behaviors is investigated using the Ostwald de-Waele power law. The immobilization point was determined using the Dougherty-Krieger equation and related to the work of Weeks at the University of Maine on blade coater runnability. An indirect measure of particle shape and size synergy is also demonstrated using the Dougherty-Krieger equation parameters.
Journal articles
Magazine articles
Key material properties in crease cracking of kraft paper, TAPPI Journal February 2021
ABSTRACT: Crease cracking of paperboard is important to control for the appearance and structural integrity of packages. Crease cracking is affected by creasing operation variables, as well as the physical properties of the paperboard. However, the effects of the physical properties are not clearly known. The objectives of this work were to identify the key material properties that affect crease cracking and to clarify the effects of fiber composition and starch. Laboratory sheets were produced from bleached and refined softwood and hardwood commercial pulp at grammage and thicknesses that match a typical paperboard. To mimic papermaking operations, surface starch was applied via a bench-top size press. The sheets were creased in the lab over a range of penetration depths, and reverse-side cracking was measured. The results showed that less reverse-side cracking was correlated with higher tensile post-peak energy, a lower bending stress, and a lower z-direction (ZD) stiffness. The tensile post-peak energy is a measure of the resistance to crack growth via fiber-bridging. The bending force and the ZD stiffness influence the forces that create cracks. It was observed that decreasing the ratio of hard-wood-to-softwood content and reducing the amount of starch would both decrease crease cracking.