Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Pilot-made, highly extensible paper for dry 3D forming, TAPPI Journal May 2025
Cellulose fiber-based packaging materials must perform well in demanding three dimensional (3D) forming process conditions. On the other hand, the development of manufacturing concepts is required for improved competitiveness of bio-based materials. This study covers some key factors that influence the extensibility of cellulose fiber-based structures and presents a pilot-scale development study of a 3D formable material concept. Bleached softwood kraft (BSK) pulp from a Nordic pulp mill was used in the pilot trials. Cellulose-based webs were formed using water-laid and foam-laid web forming using a pilot paper machine. For the water-laid forming, the BSK pulp was refined by applying a high consistency (HC) phase at over 40% consistency, followed by a low consistency (LC) refining at 4% consistency. The BSK pulp was refined for the foam-laid forming by only applying lowconsistency refining. In the foam-laid web forming, anionic sodium dodecyl sulfate (SDS), two foamable latexes, and polyvinyl alcohol (PVA) were used as foaming agents. The pilot rolls were dried at a separate steam cylinder dryer pilot and compacted in-plane in the machine direction (MD) at a separate pilot machine. Tensile properties of the treated paper webs were measured and evaluated with respect to achieved web shrinkage. The same dimensional contraction brought by shrinkage was almost strained out in tensile testing. The results indicated that the shrinkage that occurred by drying and in-plane compaction depended on the pulp furnish. The water-laid material achieved about 30% elongation, whereas the foam-laid material achieved significantly above 50% elongation. The 3D forming performance of the dry materials was tested using fixed and sliding blank methods. The dry paper sheets performed well enough in 3D forming for application to many consumer package applications according to their extensibility.
Journal articles
Magazine articles
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2020
ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease (OGR), water, water vapor as measured by moisture vapor transmission rate (MVTR), and oxygen, for applications such as food packaging, food service, and other non-food packaging. Typical functional barrier coatings can be created by applying a solid coating or extruded film, a solvent based-coating, or a water-based coating to the paper substrate using various means of coating applicators.This paper focuses on water-based barrier coatings (WBBC) for OGR, water, MVTR, and oxygen barriers. The main goal was to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC). Curtain coating has emerged as the premier low-impact application me thod for coated paper and paperboard. This paper provides examples using MLCC to create coating structures that provide multiple barrier properties in a single coating step. Barrier polymer systems studied include styrene butadiene, styrene acrylate, vinyl acrylic, and natural materials, as well as proprietary additives where required to give desired performance. The paper also shows how the specific coating layers can be optimized to produce the desired property profile, without concern for blocking, as the addition of a non-blocking top layer can be applied in the MLCC structure as well. Experiments on base sheet types also shows the importance of applying the multilayer structure on a pre-coated surface in order to improve coating thickness consistency and potentially allow for the reduction of more expensive layer components.
Journal articles
Magazine articles
The use of hollow sphere pigments as strength additives in paper and paperboard coatings—Part 1: The predictive nature of packing models on coating properties, TAPPI Journal November 2020
ABSTRACT: Hollow sphere pigments (HSPs) are widely used at low levels in coated paper to increase coating bulk and to provide gloss to the final sheet. However, HSPs also provide an ideal system through which one can examine the effect of pigment size and particle packing within a coating due to their unimodal and tunable particle sizes. The work presented in Part 1 and Part 2 of this study will discuss the use of blends of traditional inorganic pigments and HSPs in coating formulations across a variety of applications for improved coating strength. Part 1 of this study focuses on the theory of bimodal spherical packing and demonstrates the predictive nature of packing models on the properties of coating systems containing HSPs of two different sizes. This study also examines conditions where the model fails by examining the effect of particle size on coating strength in sytems like thermal paper basecoats where the non-HSP component has a broad particle size distribution, and how these surprising trends can be used to generate better-than-expected thermal printing performance in systems with low HSP/clay ratios. Part 2 of this study focuses on the incorporation of HSPs of different particle sizes into paperboard formulations to affect coating strength and opacity.
Journal articles
Magazine articles
Z-directional testing of paperboard in combined tensile and compression loading, TAPPI Journal May 2024
ABSTRACT: The out-of-plane properties of paperboard are important in several converting applications such as printing, sealing, creasing, and calendering. A juxtaposed tensile and compression curve in the z direction (ZD) will, however, appear to have a kink or discontinuity at 0 stress. The purpose of the present work is to capture the continuous transition between tension and compression and to increase the understanding of the complex ZD properties of paperboard by cyclic testing. In this attempt to unify the ZD tensile and compressive behavior of paperboard, samples were laminated to the testing platens using heat seal laminate film. The method for adhering the samples was compared to samples that were laminated and glued to the testing platens. The edge effects of the cutting method were evaluated in compression testing with samples not attached to the testing platens. The flat slope seen in the initial part of the pure compression curve disappeared when the samples were laminated to the testing platens. The flat slope was instead replaced by a continuous response in the transition across 0 N. The stiffness in the transition region resembled the response in tensile testing. When the testing is cycled, the material exhibits a history dependence. Starting the cycle in either compression or tensile will show an effect on the stiffness at the transition, as well as the compressive stiffness. However, the ultimate tensile strength is unaffected.
Journal articles
Magazine articles
The Shendye-Fleming OBA Index for paper and paperboard, TAPPI Journal March 2022
ABSTRACT: We are proposing a new one-dimensional scale to calculate the effects of optical brightening agents (OBA) on the bluish appearance of paper. This index is separate from brightness and whiteness indices.In the paper industry, one-dimensional scales are widely used for determining optical properties of paper and paperboard. Whiteness, tint, brightness, yellowness, and opacity are the most common optical properties of paper and paperboard. Most of the papers have a blue cast generated by addition of OBA or blue dyes. This blue cast is given because of the human perception that bluer is whiter, up to a certain limit. To quantify this effect, it is necessary to determine how much blue cast paper and paperboard have. As the printing industry follows the ISO 3664 Standard for viewing, which has a D50 light source, this also plays a very important role in showing a blue cast. Color perception is based on light source and light reflected from an object. The ultraviolet (UV) component in D50 interacts with OBA to provide a reflection in the blue region of the visible spectrum. Use of a UV blocking filter results in measurements without the effect of emission in the blue region. This difference is used in determining the OBA effect in the visible range of the paper. This equation is known as the Shendye-Fleming OBA Index.
Journal articles
Magazine articles
A novel unit operation to remove hydrophobic contaminants, TAPPI Journal April 2020
ABSTRACT: For mills making paper with recovered fiber, removal of hydrophobic contaminants is essential for trouble-free operation of paper machines. Significant cost savings on paper machine operation can be achieved by reducing deposits, which results in better quality, reduced downtime, increased fiber yield, and reduced energy consumption. Bubble nucleation separation (BNS) is a relatively new process for removing hydrophobic particles. When vacuum is applied to a slurry, dissolved gas bubbles nucleate on hydrophobic particles and drag them to the surface for easy removal. We constructed a 16-L batch unit to evaluate the effect of operating parameters on removal of hydrophobic particles, using statistical design of experiments. These results were used to guide our design of a 16-L continuous unit. We tested this unit on laboratory and mill samples. The removal of 60%•80% of hydrophobic particles was achieved with a low reject rate of < 2%.Following on this success, we built a 200-L pilot unit and tested it in our pilot plant. With promising results there, we installed the pilot unit at a commercial paper recycling mill. Over the course of several mill trials, we showed that it was possible to remove a considerable amount of suspended solids from paper machine white water with less than 2% rejects. Unfortunately, due to the unit only treating 50 L/min and the mill flow being 12000 L/min, we were not able treat a sufficient portion of the white water to know whether a large-scale implementation of BNS would improve paper machine runnability.
Journal articles
Magazine articles
Lignin-based resins for kraft paper applications, TAPPI Journal November 2019
ABSTRACT: We investigated miscanthus (MS) and willow (W) lignin-furfural based resins as potential reinforce-ment agents on softwood and hardwood kraft paper. These resins might be sustainable alternatives to the commercial phenolformaldehyde (PF) resins. Phenol is a petrochemical product and formaldehyde has been classified as a carcinogen by the U.S. Environmental Protection Agency. The lignin used in this study was derived from hot water extraction (160ºC, 2 h) of MS and W biomass, and may be considered sulfur-free. These biorefinery lignins were characterized for their chemical composition and inherent properties via wet chemistry and instrumental techniques. The resin blends (MS-resin and W-resin) were characterized for their molecular weight, thermal behavior, and mechanical properties. Mechanical properties were measured by the resin’s ability to reinforce softwood and hard-wood kraft papers. The effect of adding hexamethylenetetramine (HMTA), a curing agent, to the resin was also examined. Mixtures of PF and lignin-based resins were investigated to further explore ways to reduce use of non-renewables, phenol, and carcinogenic formaldehyde. The results show that lignin-based resins have the potential to replace PF resins in kraft paper applications. For softwood paper, the highest strength was achieved using W-resin, without HMTA (2.5 times greater than PF with HMTA). For hardwood paper, MS-resin with HMTA gave the highest strength (2.3 times higher than PF with HMTA). The lignin-based resins, without HMTA, also yielded mechanical properties comparable to PF with HMTA.
Journal articles
Magazine articles
Flow characteristics of drag-reducing natural bamboo fiber suspensions with minimal environmental load, TAPPI Journal September 2019
ABSTRACT: The reduction of pipe friction loss by adding drag-reducing agents has attracted attention as an aid to energy conservation. Drag-reducing agents induce drag reduction (DR) effects and should have a minimal environmental load, with natural resource-saving potential. This study demonstrates bamboo fiber as a drag-reducing agent that saves natural resources and has a low environmental load. Using pressure drop measurements, we report DR with suspensions of bamboo fibers with the average diameter of 13.3 µm and aspect ratio of 98.7. The maximum DR obtained in this experiment is 43% at the concentration of 4000 ppm and pipe diameter of 30 mm; DR is affected by the Reynolds number, suspension concentration, and pipe diameter. In addition, the bamboo fibers can be easily removed from the suspensions by filtration. We found that low-environmental-load bamboo fiber has DR effects like those of other fibers; its effects are greater than those of conventional synthetic fibers and wood pulp. Furthermore, it is resistant to mechanical degradation, recoverable, and recyclable. Therefore, DR effects can be selectively obtained by adding the fibers only when DR is needed; the fibers can then be collected when DR is no longer necessary. This method might greatly expand the application range of DR agents. The results demonstrate the usefulness of bamboo fibers as DR additives.
Journal articles
Magazine articles
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2023
ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease, water, water vapor, and oxygen, for applications such as food packaging, food service, and other non-food packaging. Today, there is increasing interest in developing recyclable and more sustainable approaches for producing these types of packages. This paper focuses on water-based barrier coatings (WBBC) for oil and grease resistance (OGR), water, moisture vapor transmission rate (MVTR), and oxygen barrier performance. The main goal is to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC) in a single application step. One advantage is in optimizing coating material cost with the use of functional chemistry in confined layers where performance is balanced within the coating layered structure. This allows simultaneous application of layers of different polymer types in one step to achieve the appropriate performance needs for a given barrier application. This paper provides working examples of using MLCC to create coating structures with multiple barrier properties in a single application pass. Barrier polymers studied include styrene butadiene, styrene acrylate, starch-containing emulsions, and polyvinyl alcohol. The paper also shows the effect of increasing the pigment volume concentration with platy clay or fine ground calcium carbonate on MVTR and OGR barrier properties.
Journal articles
Magazine articles
Surface energy considerations for offset printing of coated paper and paperboard, TAPPI Journal November 2023
ABSTRACT: Offset printing of coated paper involves the complex interactions of ink with a surface that is characterized by three major properties: roughness, porosity, and related pore network structure and surface chemistry (related to surface free energy [SFE]). The effects of porosity and roughness are relatively well understood and are documented in the literature, whereas the influence of surface chemistry is much less studied and therefore the focus of this paper. The key results shown include: i) Coating porosity has a negligible effect on SFE determination by contact angle using two fluids. ii) The chemistry of the latex polymer in the coating formulation dominates the influence on SFE compared to pigment, with any surface energy differences present in the pigment being almost completely masked by latex. iii) Wetting agent and corona treatment can impact water absorption rate and surface spreading of water, resulting in small differences in printability. Increasing the concentration of the surfactant on a coated surface indicates switching orientation of the surfactant molecules, giving a “step wise” printing result. When looking to improve offset printability by selection of different pigments, the variation in SFE is less important than variation in either surface roughness or porosity.