Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,631–1,640 of 1,687 results (Duration : 0.012 seconds)
Journal articles
Magazine articles
Open Access
Impact of different calendering strategies on barrier coating pickup, TAPPI Journal November 2023

ABSTRACT: Paper was pre-calendered in a pilot scale configuration with a traditional soft nip calender and a metal belt calender. All calendering strategies reduced surface roughness and permeability of the samples, but different strategies affected the surface roughness and permeability differently. The metal belt calender seemed to have a larger effect on the large-scale variations compared to the soft nip calender. Six test points from the pilot calendered papers were chosen for laboratory coating studies. Uncalendered paper was included as reference samples. The calendered samples and the reference were pre-coated with a regular pigmented coating consisting of a ground calcium carbonate (GCC) pigment and a styrene acrylate (SA) latex. Both uncoated and pre-coated substrates were barrier coated with a polyvinyl alcohol (PVOH) in one and two layers. The coating pickup was determined gravimetrically, and the barrier properties were evaluated with TAPPI Standard Test Method T 454 grease resistance test. All samples needed two PVOH coating layers to form a grease barrier. The uncalendered sheets showed the best results with one coating layer, but this was at the expense of a higher coating pickup compared to the calendered sheets. The barrier coating pickup could be reduced by a combination of high temperature metal belt calendering and pre-coating. The high temperature and long residence time in the nip enabled plasticization of the fibers. This led to an irreversible deformation, even after water application. This meant that the smoothness obtained during calendering would be less affected by water-induced roughening during the coating operation.

Journal articles
Magazine articles
Open Access
Use of kaolin clay in aqueous barrier coating applications, TAPPI Journal November 2023

ABSTRACT: Paper-based packaging with barrier effect, as opposed to single use plastics, is gaining more prominence for sustainability reasons. At the same time, latex- or biopolymer-based aqueous barrier coating dispersions are increasingly being adopted as a better alternative to the traditional barrier coating materials, such as wax, surface active chemicals, and polyethylene. In this work, studies were performed to determine the influence of different kaolin clays in latex binder-based aqueous coatings on barrier properties, namely, oil and grease, water resistance, and water vapor transmission rate, by applying coatings to solid bleached sulfate (SBS) paperboard substrate in the laboratory. The aim was to explore potential benefits of using kaolin clay to replace some of the latex binder in coating and improve or maintain various types of barrier performance and blocking without negatively influencing the other performance attributes, including heat seal. The delaminated clay with the highest shape factor provided improved barrier properties over the clays of low shape factor. The ultrafine and non-delaminated clays required significantly higher coat weights to reach satisfactory barrier properties. Coatings with different latex levels indicated that a considerably high proportion of coarse delaminated clay can be incorporated to replace latex binder, while still achieving exceptional barrier properties. Furthermore, a change in binder system was found to significantly alter the barrier properties and the role that a mineral pigment can play. The results indicate that a proper selection of binder systems for each barrier property would be required while considering the clay/latex coating systems.

Journal articles
Open Access
Effect of xylan on the mechanical performance of softwood kraft pulp 2D papers and 3D foams, TAPPI Journal March 2025

ABSTRACT: Pulp fibers are paramount in paper products and have lately seen emerging use in fiber foams. Xylan, an integral component in pulp fibers, is known to contribute to paper strength, but its effect on the strength of pulp fiber foams remains less explored. In this study, we investigate the role of xylan in both 2D handsheets and 3D foams. For a softwood kraft pulp, we enzymatically removed 1% from pulp fibers and added 3% xylan to them by adsorption, corresponding to approximately a decrease of a tenth and an increase of a third of the total xylan content. The mechanical properties of 2D fiber networks, i.e., handsheets, made using the xylan-enriched pulp improved, particularly regarding tensile strength and Young’s modulus; however, the decrease in mechanical properties of handsheets made from enzymatically- treated xylan-depleted pulp was more pronounced. In 3D networks • pulp fiber foams, much less fiber-fiber contacts formed, and thus the mechanical properties were not as much influenced by removal of xylan. Furthermore, the presence of the required surfactant on the fibers, acting as debonding agent, overshadows any positive effect xylan might have on fiber-fiber bonding. We propose that the improved mechanical properties for the sheets result from a combination of an increased number of fiber-fiber bonds and higher sheet density, while the deterioration in mechanical properties of handsheets comprising enzymatically-treated fibers is caused by the opposite effect.

Journal articles
Open Access
Effect of xylan on the mechanical performance of softwood kraft pulp 2D papers and 3D foams, TAPPI Journal March 2025

ABSTRACT: Pulp fibers are paramount in paper products and have lately seen emerging use in fiber foams. Xylan, an integral component in pulp fibers, is known to contribute to paper strength, but its effect on the strength of pulp fiber foams remains less explored. In this study, we investigate the role of xylan in both 2D handsheets and 3D foams. For a softwood kraft pulp, we enzymatically removed 1% from pulp fibers and added 3% xylan to them by adsorption, corresponding to approximately a decrease of a tenth and an increase of a third of the total xylan content. The mechanical properties of 2D fiber networks, i.e., handsheets, made using the xylan-enriched pulp improved, particularly regarding tensile strength and Young’s modulus; however, the decrease in mechanical properties of handsheets made from enzymatically- treated xylan-depleted pulp was more pronounced. In 3D networks • pulp fiber foams, much less fiber-fiber contacts formed, and thus the mechanical properties were not as much influenced by removal of xylan. Furthermore, the presence of the required surfactant on the fibers, acting as debonding agent, overshadows any positive effect xylan might have on fiber-fiber bonding. We propose that the improved mechanical properties for the sheets result from a combination of an increased number of fiber-fiber bonds and higher sheet density, while the deterioration in mechanical properties of handsheets comprising enzymatically-treated fibers is caused by the opposite effect.

Journal articles
Magazine articles
Open Access
Predicting strength characteristics of paper in real time using process parameters, TAPPI Journal March 2022

ABSTRACT: Online paper strength testing methods are currently unavailable, and papermakers have to wait for manufacture of a complete reel to assess quality. The current methodology is to test a very small sample of data (less than 0.005%) of the reel to confirm that the paper meets the specifications. This paper attempts to predict paper properties on a running paper machine so that papermakers can see the test values predicted in real time while changing various process parameters. This study was conducted at a recycled containerboard mill in Chicago using the multivariate analysis method. The program provided by Braincube was used to identify all parameters that affect strength characteristics. Nearly 1600 parameters were analyzed using a regression model to identify the major parameters that can help to predict sheet strength characteristics. The coefficients from the regression model were used with real-time data to predict sheet strength characteristics. Comparing the prediction with test results showed good correlation (95% in some cases). The process parameters identified related well to the papermaking process, thereby validating the model. If this method is used, it may be possible to predict various elastic moduli (E11, E12, E22, etc.) in the future as the next step, rather than the traditional single number “strength” tests used in the containerboard industry, such as ring crush test (RCT), corrugating medium test (CMT), and short-span compression strength test.

Journal articles
Magazine articles
Open Access
Effects of phosphogypsum whiskers modification with calcium stearate and their impacts on properties of bleached softwood paper sheets, TAPPI Journal September 2021

ABSTRACT: By combining the structural properties and characteristics of phosphogypsum whiskers, a preliminary study on the modification of phosphogypsum whiskers and their application in papermaking was carried out. The effects of reaction temperature, reaction time, and reaction concentration on the solubility and retention of modified phosphogypsum whiskers and the effects of phosphogypsum whiskers on the physical properties of paper under different modified conditions were explored. The research results show that, after the phosphogypsum whiskers are modified with calcium stearate, a coating layer will be formed on the surface of the whiskers, which effectively reduces the solubility of the phosphogypsum whiskers. The best modification conditions are: the amount of calcium stearate relative to the absolute dry mass of the phosphogypsum whisker is 2.00%; the modification time is 30 min, and the modification temperature is 60°C. The use of modified phosphogypsum whiskers for paper filling will slightly reduce the whiteness, folding resistance, burst resistance, and tensile strength of the paper, but the tearing degree and retention of the filler will be increased to some extent.

Journal articles
Magazine articles
Open Access
Rheological characteristics of platy kaolin, TAPPI JOURNAL September 2019

ABSTRACT: Platy kaolin can provide significant value in the coating of paper and paperboard. It can be used in multiple applications and can provide benefits such as titanium dioxide (TiO2) extension, smoothness improvement, improved print gloss or ink set rates, calendering intensity reduction, and improved barrier properties. It is not a pigment that can be simply substituted for traditional hydrous kaolin without some adjustment to the coating formulation. These adjustments can be as simple as reducing solids, but may require binder changes as well. The coater setup may need to be adjusted because of the unique rheological behaviors these pigments exhibit.The unique rheological characteristics of platy kaolin are explored here. Measurements of the water retention of platy kaolin containing coatings confirm that water retention is not reduced in comparison to more blocky kaolin pigments, despite the lower coating solids at which they need to be run. This means that the rheological characteristics are the most important in understanding the runnability. An extensive analysis reveals some unique behaviors that need to be understood when utilizing these materials. Viscoelastic measurements indicate that, for this binder system, Tan d is mainly a function of solids. This may explain how weeping is initiated on a blade coater. The degree of shear thinning behaviors is investigated using the Ostwald de-Waele power law. The immobilization point was determined using the Dougherty-Krieger equation and related to the work of Weeks at the University of Maine on blade coater runnability. An indirect measure of particle shape and size synergy is also demonstrated using the Dougherty-Krieger equation parameters.

Journal articles
Magazine articles
Open Access
Key material properties in crease cracking of kraft paper, TAPPI Journal February 2021

ABSTRACT: Crease cracking of paperboard is important to control for the appearance and structural integrity of packages. Crease cracking is affected by creasing operation variables, as well as the physical properties of the paperboard. However, the effects of the physical properties are not clearly known. The objectives of this work were to identify the key material properties that affect crease cracking and to clarify the effects of fiber composition and starch. Laboratory sheets were produced from bleached and refined softwood and hardwood commercial pulp at grammage and thicknesses that match a typical paperboard. To mimic papermaking operations, surface starch was applied via a bench-top size press. The sheets were creased in the lab over a range of penetration depths, and reverse-side cracking was measured. The results showed that less reverse-side cracking was correlated with higher tensile post-peak energy, a lower bending stress, and a lower z-direction (ZD) stiffness. The tensile post-peak energy is a measure of the resistance to crack growth via fiber-bridging. The bending force and the ZD stiffness influence the forces that create cracks. It was observed that decreasing the ratio of hard-wood-to-softwood content and reducing the amount of starch would both decrease crease cracking.

Journal articles
Magazine articles
Open Access
Application of foamed additives to the surface of wet handsheets, TAPPI Journal January 2021

ABSTRACT: We explored the application of foamed wet-end additives onto wet handsheets to qualify our method of application and to demonstrate the method’s usefulness for prescreening additives and foaming agents for packaging applications.We modified a laboratory drawdown coating machine to allow coating of wet handsheets with foamed additives. Initial sheet solids were adjusted to a target of 8%•25% by vacuum. Foam layer thickness was set mechanically. After application, the foamed additives were drawn into the sheet with vacuum. The additive dosage was adjusted by altering its concentration within the foaming formulation. We evaluated more than 100 foaming agents and 10 strength additives, comparing wet-end and foam-assisted addition with no addition on recycled linerboard and virgin linerboard furnish. Foam-assisted addition typically displayed a much steeper dose-response curve and much higher maximum strength levels than wet-end addition. Our results suggest potential target applications for this technology, such as lightweighting, and improved strength performance in mills with relatively closed water systems, where strength aids added into the wet end are adversely influenced by accumulation of inorganic ions and organic species.

Journal articles
Magazine articles
Open Access
The effect of contact time between CPAM and colloidal silica on the flocculation behavior in the approach flow, TAPPI Journal January 2021

ABSTRACT: Multicomponent wet-end systems have become increasingly common in papermaking, with the objective of improving the retention-formation-dewatering relationship. It is quite common to use at least a cationic polymer, often in combination with an anionic microparticle. In some cases, a fixative is also used. However, there is still debate on the optimal implementation of these systems. In particular, optimizing the contact time of the cationic polymer prior to addition of the anionic microparticle is still poorly understood. In this work, we investigate the effect of the contact time of a cationic polyacrylamide (CPAM) prior to addition of colloidal silica on the flocculation response in a flowing fiber suspension. The effect of using a fixative is also investigated. Focused beam reflectance measurements (FBRM) are combined with zeta-potential measurements for optimizing the addition levels of a two- and three-component system, as well as for elucidating the effect of contact time on CPAM performance. Trials are then performed on a pilot scale flow loop, where the time between addition of these two components is varied and the resulting flocculation response is characterized using high-speed filming and image analysis techniques. It is shown that the efficacy of CPAM can be improved through use of a fixative and that a longer CPAM contact time may be beneficial in terms of immediate flocculation; however, hydrodynamic shear tends to dominate the flocculation response regardless of contact time due to floc rupture.