Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,671–1,680 of 1,687 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Open Access
Economic and competitive potential of lignin-based thermoplastics using a multicriteria decision-making method, TAPPI Journal September 2022

ABSTRACT: As a result of new lignin extraction plants hatching and increasing volumes of technical lignin becoming available, a variety of lignin derivatives, including phenolic resins and polyurethane (PU) foams, are reaching the marketplace or being used as intermediate products in many industrial applications. In the spectrum of possible lignin derivatives, thermoplastics appear particularly attractive due to a symbiosis of market, policy, and technology drivers. To assess the preferredness for lignin-based thermoplastics, this paper adapted a risk-oriented methodology formerly applied to assess lignin usage in various applications (phenol-formaldehyde [PF] resins, PU foams, and carbon fiber applications) to the case of lignin-based thermoplastics using hydroxypropylated lignin (HPL) and miscible blends of lignin and polyethylene oxide (PEO). The HPL is considered for garbage bags and agricultural films applications, while lignin-PEO blends are used as replacement for acrylonitrile butadiene styrene (ABS) in applications such as automotive parts. In the methodology, two phased-implementation strategies were defined for each thermoplastic derivative, considering perspectives for profit maximization (90 metric tons/day integrated units) and revenue growth (350 metric tons/day overall capacity), which were considered for implementation within a softwood kraft pulping mill. A set of six criteria representative of the main economic and market competitiveness issues were employed, and their respective importance weights were obtained in a multicriteria decision-making (MCDM) panel.Early-stage techno-economic estimates were done as a basis for the calculation of decision criteria. Compared to product derivatives previously assessed, capital investment for thermoplastic strategies appeared marginally higher due to the required lignin modification steps (on average 30% higher at similar capacity, and 6% for higher-scale revenue diversification strategies). Higher operating costs were also observed due to increased chemical expenses for all thermoplastic strategies, which are ultimately balanced by revenues associated with targeted thermoplastic products, leading to greater annual margins and cash flow generation over the project lifetime for thermoplastic strategies compared to other product applications (58% to 66% higher on average, at similar scale). Benefits of improved economics were reflected in economic criteria, internal rate of return (IRR), and cash flow on capital employed (CFCE), as well as in the price competitiveness criterion, CPC. Overall, the combination of relatively high lignin content in the plastic formulation and the less costly modification method contributed to lignin-PEO strategies, gaining the top two rankings. Based on their overall scores, both strategies defined for HPL would also integrate the group of “preferred” strategies, but are outranked by strategies that consider lignin positioning on PU foam applications.

Journal articles
Magazine articles
Open Access
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021

ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HO•) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.

Journal articles
Magazine articles
Open Access
Quantification of block testing for coated paper substrates, TAPPI Journal November 2024

ABSTRACT: Block resistance is a critical property for coated paper and board substrate that will be rolled, stacked, or otherwise contact itself after coating. Small differences in the coated substrate’s blocking can determine whether the substrate can be successfully used for its designated purpose. However, this crucial property is typically evaluated using a qualitative scale that is based on subjective operator ratings and impacted by factors that include: (1) sound of coated substrate during separation, and (2) force with which substrates are separated. This paper tests the hypothesis that quantifying the block test by measuring the force required to peel samples apart improves the test by: (1) providing more standardized testing conditions by controlling peel force and rate; (2) more clearly differentiating samples that experience minimal to some blocking; and (3) maintaining customizability to evaluate customer-specific test conditions. The method developed in this study uses a standard block tester and block testing conditions, but it peels the coated paper samples using a hot tack/heat seal instrument with force measurement capabilities. This paper demonstrates, using the instrument’s heat seal capabilities, that it can measure peel forces that represent the full range of observable block scores. The efficacy of this method was evaluated by having a group of trained operators engage in a randomized, blind experiment where they assessed block resistance on a set of coated paper samples using a modified qualitative block scale and compared their results to force measurements collected using the proposed method. The sample set included two coatings that have successfully run in commercial trials with minimal blocking, and one coating that experienced significant blocking in commercial trials despite only exhibiting some blocking at standard block test conditions in laboratory testing. The quantitative test method presented in this paper clearly differentiated these samples, whereas the qualitative assessment could not predict which samples had suitable block resistance for commercial use. As any tensile tester capable of measuring with 0.1 N resolution can be used for the Quantitative Block Test, the proposed method can be widely adopted. Furthermore, this method can be used for any block condition.

Journal articles
Magazine articles
Open Access
Boiler retrofit improves efficiency and increases biomass firing rates, TAPPI Journal March 2021

ABSTRACT: Domtar’s fluff pulp mill in Plymouth, NC, USA, operates two biomass/hog fuel fired boilers (HFBs). For energy consolidation and reliability improvement, Domtar wanted to decommission the No. 1 HFB and refurbish/retrofit the No. 2 HFB. The No. 2 HFB was designed to burn pulverized coal and/or biomass on a traveling grate. The steaming capacity was 500,000 lb/h from coal and 400,000 lb/h from biomass. However, it had never sustained this design biomass steaming rate. As the sole power boiler, the No. 2 HFB would need to sustain 400,000 lb/h of biomass steam during peak loads. An extensive evaluation by a combustion and boiler technologies supplier was undertaken. The evaluation involved field testing, analysis, and computational fluid dynamics (CFD) modeling, and it identified several bottle-necks and deficiencies to achieving the No. 2 HFB’s biomass steam goal. These bottlenecks included an inadequate combustion system; insufficient heat capture; excessive combustion air temperature; inadequate sweetwater con-denser (SWC) capacity; and limited induced draft fan capacity.To address the identified deficiencies, various upgrades were engineered and implemented. These upgrades included modern pneumatic fuel distributors; a modern sidewall, interlaced overfire air (OFA) system; a new, larger economizer; modified feedwater piping to increase SWC capacity; replacement of the scrubber with a dry electrostatic precipitator; and upgraded boiler controls.With the deployment of these upgrades, the No. 2 HFB achieved the targeted biomass steaming rate of 400,000 lb/h, along with lowered stack gas and combustion air temperatures. All mandated emissions limit tests at 500,000 lb/h of steam with 400,000 lb/h of biomass steam were passed, and Domtar reports a 10% reduction in fuel firing rates, which represents significant fuel savings. In addition, the mill was able to decommission the No. 1 HFB, which has substantially lowered operating and maintenance costs.

Journal articles
Magazine articles
Open Access
Commercially relevant water vapor barrier properties of high amylose starch acetates: Fact or fiction?, TAPPI Journal September 2021

ABSTRACT: Starches have recently regained attention as ecofriendly barrier materials due to the increased demand for sustainable packaging. They are easily processable by conventional plastics processing equipment and have been utilized for oil and grease barrier applications. While starches have excellent oxygen barrier properties and decent water barrier properties at low relative humidity (RH), they are moisture sensitive, as demonstrated by the deterioration of the barrier properties at higher RH values. Starch esters are chemically modified starches where the hydroxyl group of the starch has been substituted by other moieties such as acetates. This imparts hydrophobicity to starches and has been claimed as a good way of retaining water vapor barrier properties of starches, even at high RH conditions. We studied the water vapor barrier properties of one class of starch esters, i.e., high amylose starch acetates that were assumed to have good water vapor barrier properties. Our investigations found that with a high degree of substitution of hydroxyl groups, the modified starches did indeed show improvements in water vapor response as compared to pure high amylose starch films; however, the barrier properties were orders of magnitude lower than commercially used water vapor barriers like polyethylene. Even though these materials had improved water vapor barrier response, high amylose starch acetates are likely unsuitable as water vapor barriers by themselves, as implied by previous literature studies and patents.

Journal articles
Magazine articles
Open Access
The use of minerals in fiber-based packaging and pulp molding, TAPPI Journal January 2024

ABSTRACT: Minerals are widely used in the pulp and paper industry for aiding the processing, economics, and final quality of fiber-based products. Among these, calcium carbonate, talc, and kaolin are widely used as fillers, and these can have varying brightness, particle size distributions, and aspect ratios. For the molded fiber area, these minerals can raise the solids content of the pulp mixture and improve throughput and lower energy requirements for drying. Talc is also widely used as a process control agent, picking up pitch and stickies and improving productivity by lowering machine cleaning time.The replacement of single use plastic with fiber-based replacements is a global trend; however, it does come with some significant challenges, such as grease and moisture proofing. Previously, per- and polyfluoroalkyl substances (PFAS) have been used to provide functions such as water and grease repellency, but regulatory demands have seen its demise in the packaging industry. Therefore, water holdout is now generally achieved by addition of alkyl ketene dimer (AKD) sizing. Wax additives are being developed and tested as PFAS replacements for oil and grease resistance. Rather than strongly repelling lipids from the fiber surface, these PFAS alternatives restrict flow pathways and react with food oils to alter their flow characteristics to prevent penetration through the substrate. During studies incorporating both PFAS substitutes and minerals, no detrimental interactions were observed. This paper addresses the different needs of the molded fiber market by including mineral fillers in molded fiber articles and will be presented as a series of different case studies. In all studies, we show that the trends observed when mineral filler is added to molded fiber are broadly similar to those seen in conventional paper and paperboard applications. Mineral addition in all studies gave improvements in productivity and optical appearance. With its organophilic surface, hydrophobic talc had the additional advantage of pitch and sticky control, and although a small decrease in strength was always observed when filler was added, the final articles still retained sufficient strength for their particular application. This small strength reduction should be balanced against the productivity gains.

Journal articles
Magazine articles
Open Access
Experimental investigations into fold cracking of double coated barrier dispersion coatings, TAPPI Journal November 2024

ABSTRACT: The trend for replacing single-use plastics with fiber-based barrier coated board packaging has prompted a significant amount of research. There are many proposed ways of providing suitable packaging for applications like food service. Among these are dispersion coated barriers on board, as well as laminated boards that can be produced using conventional polyethylene (PE) or new biodegradable plastics. Minerals have also been shown to be suitable additives to these coatings for improving barrier performance through surface chemistry and by increasing the tortuosity of the pathway through the barrier layer. They also improve the cost effectiveness of the layer by lowering the material cost and raising the solids content, and by improving hold out of the functional layers, leading to a reduction in the amount of barrier coating needed to meet a given performance requirement. Minerals can also aid in the barrier handling in terms of rheology and reduced “stickiness,” as well as blocking of the films. When incorporated as fillers into extruded films, improved adhesion of the film to the board has been reported. One of the remaining challenges is the potential for cracking at the fold during converting and the loss of barrier performance that this can lead to. In this work, we systematically looked at the impact of mineral type and level in a dispersion coating. We assessed the differences in performance resulting from different coating application methods for the precoat layer by looking at the cracking tendency and loss of barrier functionality after folding for both the precoat alone and the final double coated sheets. Barrier results include moisture vapor transmission rate (MVTR), viscous vegetable oil, and the fluid blue stain in industrial methylated spirits (IMS) and Cobb water absorption, both before and after folding.

Journal articles
Open Access
A targeted approach to produce energy-efficient packaging materials from high-yield pulp, TAPPI Journal August 2025

ABSTRACT: Unlike fossil-based plastics, wood-based packaging materials can be produced in an ecofriendly manner using wood chip residuals from sawmills and pulpwood. To produce high-yield pulp like chemithermomechanical pulps (CTMPs) for paperboard and liquid packaging, it is crucial to reduce the electric energy consumption during fiber separation. The ultimate objective is to revolutionize paperboard production by achieving a middle-layer CTMP process that consumes less than 200 kilowatt-hours per metric ton (kWh/t), significantly improving from the current 500•600 kWh/t energy demand. Optimizing the CTMP impregnation process of sodium sulfite (Na2SO3) in wood chips is crucial for achieving uniform softening, ideally at the fiber level. The properties of the fibers are significantly affected by the content of lignin sulfonates within the walls of the fiber and the middle lamellae. In this study, we employed in-house developed X-ray fluorescence (XRF) techniques, validated by beamline measurements, to map the distribution of sulfonated lignin within fibers. It also seemed possible to enhance the surface area of lignin-rich pulp fibers while losing minimal bulk by refining them with well-optimized low consistency (LC) refining. We aimed to achieve a highly efficient separation of coniferous wood fibers by co-optimizing the sulfonation and the temperature in the preheater and chip refiner. Additionally, we explored how lignin’s softening behavior and potential crosslinking influence subsequent unit operations, including pressing, peroxide bleaching, and drying, following the defibration process. In defibration during chip refining, the maximum softening of wood fibers is preferred to maximize fiber preservation and minimize energy consumption. However, optimizing the stiffness of finished pulp fibers is preferable to reduce bulk loss during paperboard production. It can strive to optimize processes to develop stronger, lighter, and more sustainable composite packaging materials. Reducing environmental impact and electric energy can help create a more sustainable future.

Journal articles
Magazine articles
Open Access
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022

ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: œ The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. œ Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. œ Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.

Journal articles
Magazine articles
Open Access
Application of spruce wood flour as a cellulosic-based wood additive for recycled paper applications— A pilot paper machine study, TAPPI Journal October 2021

ABSTRACT: This study gives a first insight into the use of wood flour as a plant-based and cellulosic-based alter-native additive for newsprint and paperboard production using 100% recycled fibers as a raw material. The study compares four varieties of a spruce wood flour product serving as cellulosic-based additives at addition rates of 2%, 4%, and 6% during operation of a 12-in. laboratory pilot paper machine. Strength properties of the produced news-print and linerboard products were analyzed. Results suggested that spruce wood flour as a cellulosic-based additive represents a promising approach for improving physical properties of paper and linerboard products made from 100% recycled fiber content. This study shows that wood flour pretreated with a plant-based polysaccharide and untreated spruce wood flour product with a particle size range of 20 μm to 40 μm and 40 μm to 70 μm can increase the bulk and tensile properties in newsprint and linerboard applications.