Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,751–1,760 of 1,828 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Open Access
Life cycle carbon analysis of packaging products containing nonwood residues: A case study on linerboard and corrugating medium, TAPPI Journal March 2024

ABSTRACT: Circularity is creating momentum toward utilizing waste feedstock in a myriad of applications. The paper industry is not an exception to this trend, and packaging products made from agricultural or agro-industrial residues are receiving more attention now than ever. Additionally, negative consumer perceptions of tree felling are accelerating the acceptance of these fibers. Nevertheless, adopting these residues raises the issue of whether they constitute a better alternative to fight climate change than wood. Answering this question is imperative to ensure that pledges to reduce carbon footprints across the industry are fulfilled. This paper aims to estimate the carbon footprint of corrugating medium and linerboard containing wheat straw and sugarcane bagasse pulp compared to analogous wood-based materials. The goal was also to understand how methodological decisions to allocate emissions to nonwood residues can affect the results. This study includes a life cycle carbon analysis spanning from cradle to grave, which comprises stages for residue production, pulping, paper-making, waste management, and corresponding transportation. For the proposed case study, the results suggest that straw- and bagasse-based medium and linerboard can present a higher carbon footprint than products made from virgin and recycled wood fibers. The main driver is the production of nonwood chemimechanical pulp. In addition, the lower capacity of nonwood residues to be recycled increases the overall impact. Finally, decisions around emissions allocation highly influence the results. This study helps mitigate part of the uncertainty around the environmental sustainability of corrugating medium and linerboard made from the selected nonwood residues.

Journal articles
Magazine articles
Open Access
Life cycle carbon analysis of packaging products containing purposely grown nonwood fibers: A case study on the use of switchgrass pulp for linerboard and corrugating medium, TAPPI Journal March 2024

ABSTRACT: Sustainability is driving innovation in the pulp and paper industry to produce goods with lower carbon footprints. Although most of the efforts are currently focused on increasing energy efficiency or switching to renewable fuels, the attention toward alternative feedstocks has increased in recent years. Claims of nonwood fibers requiring lower use of chemicals and energy than wood fibers, along with negative consumer perceptions of tree felling, are helping purposely grown nonwoods to gain market share. The potential nonwood fiber environmental superiority over virgin or recycled wood fibers remains controversial and is often driven more by emotion and public perception rather than facts. This paper estimates the carbon footprint of corrugating medium and linerboard containing switchgrass pulp compared to analogous wood-based materials. The study includes a life cycle carbon analysis spanning from cradle to gate, which comprises stages for fiber production, pulping, papermaking, and corresponding transportation. Carbon footprints for virgin linerboard, recycled linerboard, virgin medium, and recycled medium were estimated at around 510, 620, 460, and 670 kg carbon dioxide equivalent per metric ton (kg CO2eq/t), respectively. Replacing 30% of the virgin or recycled material with switchgrass pulp translated into carbon footprint increases of around 60%, 45%, 62%, and 38%, respectively. Thus, for the proposed case study, the results suggest that switchgrass-based medium and linerboard can present a higher carbon footprint than products made from virgin and recycled wood fibers. The main driver is the production of nonwood mechanical pulp.This study was designed to mitigate part of the uncertainty around the environmental sustainability of medium and linerboard made from the selected purposely grown nonwood fibers.

Journal articles
Magazine articles
Open Access
Peracetate/singlet oxygen chemistry used in post-bleaching of kraft pulp as a practical oxidant for paper machines, TAPPI Journal May 2021

ABSTRACT: The use of a novel sodium peracetate/singlet oxygen chemistry for brightening bleached kraft pulp shows exciting potential for technical performance, supply logistics, safety, and cost reduction. Potential chemical carryover to the paper machine raises questions about whether peracetate will impact paper machine performance, such as metal corrosion, useful press felt life, and interference with existing biocide programs or paper machine chemistry. Sodium peracetate/singlet oxygen chemistry can be used in high-density storage chests for brightening/whitening and to increase color stability. Any oxidant used directly before the paper machine has the possibility of impacting paper machine operations. Traditional oxidants used in bleaching, such as chlorine dioxide and hydrogen peroxide, are known to cause corrosion on machinery metals and press felts. Hydrogen peroxide residuals can interfere with common biocide programs. Traditional oxidants used in biocide treatments themselves significantly degrade press felt life when the rule-of-thumb concentration thresholds are exceeded. Sodium peracetate is evaluated in this paper for its impact on nylon press felt fiber degradation, metal corrosion, and interference with typical biocide programs.Laboratory results indicate that sodium peracetate/singlet oxygen chemistry is less corrosive than chlorine, bromine, and hydrogen peroxide on press felt nylon fiber and can therefore be used at higher levels than those chemistries to increase brightness without increasing negative downstream impact. Sodium peracetate can also be used with current biocide programs without negative impacts such as consumptive degradation. Higher residuals of peracetate going to the paper machine may be useful as a biocide itself and can complement existing programs, allowing those programs to stay within their safe operating levels and thereby extend press felt useful life.

Journal articles
Magazine articles
Open Access
How to use total dissolved solids measurements to evaluate the performance of diffuser washers—A mill study, TAPPI Journal April 2020

ABSTRACT: Various types of pulp washing equipment are available. Each washing device has a unique mechanical construction, and the washing principle is often a combination of dilution, thickening, and displacement washing. In this work, the performance of the pressure diffuser washer is studied. In stepwise trials, the effect of the feed and discharge consistencies on the performance of the diffuser was studied. The effect of the downward velocity of the screen on the pressure diffuser’s washing efficiency was also studied. The measurement of total dissolved solids (TDS) by a process refractometer was used as a wash loss measurement unit and the refractometer’s results were used in the calculations of standardized Nordén efficiency (E10) values. The chemical oxygen demand (COD) and conductivity values were also measured and their results compared to the TDS results.The results indicated that feed consistency has a significant effect on the performance and effectiveness of the diffuser washers in the mill. It can also be stated that when the downward velocity of the screen is adjusted to too high a level, the washing efficiency of the pressure diffuser decreases. As a conclusion from the mill tests, it can be stated that even small process parameter changes can provide enhanced diffuser washing at the beginning of the washing line, which has a direct effect on the performance of post-oxygen washing.

Journal articles
Magazine articles
Open Access
Viscoelastic web curl due to storage in wound rolls, TAPPI Journal July 2020

ABSTRACT: Winding is often the final operation in a roll-to-roll manufacturing process. Web materials, i.e., materials that are thin compared to their length, are wound into rolls because this form is the only practical means to store them. The resulting bending strains and associated stresses are large for thick webs and laminates. As many webs are viscoelastic on some time scale, bending stresses lead to creep and inhomogeneous changes in length. When the web material is unwound and cut into discrete samples, a residual curvature remains. This curvature, called curl, is the inability for the web to lie flat at no tension. Curl is an undesirable web defect that causes loss of productivity in a subsequent web process. This paper describes the development and implementation of modeling and experimental tools to explore and mitigate curl in homogenous webs. Two theoretical and numerical methods that allow the prediction of curl in a web are developed: a winding software based on bending recovery theory, and the implementation of dynamic simula-tions of winding. One experimental method is developed that directly measures the curl online by taking advantage of the anticlastic bending resulting from the curl. These methods are demonstrated for a low-density polyethylene web.

Journal articles
Magazine articles
Open Access
Mechanical modification of softwood pulp fibers using a novel lightweight vertical bar plate, TAPPI Journal April 2021

ABSTRACT: Refiner plates made using sand casting have a draft angle, which results in a trapezoidal bar shape. These trapezoidal bar plates have a limited throughput compared to the vertical bar plates, and eventually the edges of the bars become dull, resulting in longer time to reach the target freeness and shorter service life. The new light-weight refiner plate with a bar insertion method into a plate base was developed by selecting an aluminium-based alloy as the plate base material and a stainless steel alloy with high wear resistance as the bar material. The light-weight plate with sharp bar edges was very effective in reducing refining energy by reaching the target freeness faster than the sand-cast bar plate. Finally, the lightweight sharp bar plate, which weighed only about half the weight of the cast bar plate, was expected to significantly contribute to easy replacement, improved paper quality, and larger throughput without excessive loss of fiber length.

Journal articles
Magazine articles
Open Access
A case study review of wood ash land application programs in North America, TAPPI Journal February 2021

ABSTRACT: Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash.Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.

Journal articles
Magazine articles
Open Access
Addressing production bottlenecks and brownstock washer optimization via a membrane concentration system, TAPPI Journal July 2021

ABSTRACT: Advancements in membrane systems indicate that they will soon be robust enough to concentrate weak black liquor. To date, the economic impact of membrane systems on brownstock washing in kraft mills has not been studied and is necessary to understand the viability of these emerging systems and their best utilization.This study investigated the savings that a membrane system can generate related to brownstock washing. We found that evaporation costs are the primary barrier for mills seeking to increase wash water usage. Without these additional evaporation costs, we showed that our hypothetical 1000 tons/day bleached and brown pulp mills can achieve annual savings of over $1.0 MM when operating at higher dilution factors and fixed pulp production rate. We then investigated the impact of increasing pulp production on mills limited by their equipment. In washer-limited mill examples, we calculated that membrane systems can reduce the annual operating cost for a 7% production increase by 91%. Similarly, in evaporator-limited mill examples, membrane systems can reduce the annual operating cost for a 7% production increase by 86%. These results indicated that membrane systems make a production increase significantly more feasible for these equipment-limited mills.

Journal articles
Magazine articles
Open Access
Cross-flow separation characteristics and piloting of graphene oxide nanofiltration membrane sheets and tubes for kraft black liquor concentration, TAPPI Journal September 2023

ABSTRACT: Dewatering of weak black liquor (WBL) in the kraft cycle by evaporation is highly energy intensive. Membranes are an attractive alternative for energy-efficient dewatering, but existing commercial polymeric or ceramic membranes are either degraded in BL or have high capital costs. Our recent works have demonstrated the engineering of graphene oxide (GO) nanofiltration membranes, their stability and promising performance in BL conditions, and preliminary scale-up into sheets and tubes. Here, we describe in detail the separation characteristics of GO membrane sheets and tubes under real BL conditions and crossflow operation. Recycle-mode piloting of a GO tubular membrane showed average “production flux” of 16 L/m2/h (LMH) and high rejections of lignin (98.3%), total solids (66%), and total organic carbon (83%), with no signs of irreversible fouling identified. A corresponding GO sheet membrane produced an average flux of ~25 LMH and maintained high lignin rejection of ~97% during a slipstream pilot at a kraft mill site using WBL with ~16 wt% total solids (TS). Finally, we piloted a Dow/DuPont XUS1808 polyamide composite reverse osmosis (RO) membrane for last-mile processing of the GO nanofiltration membrane permeate. The RO membrane showed a steady state flux of 19 LMH at 65 bar and produced ~0.02 wt% TS water product, which is highly suitable for reuse in pulp washing operations in the kraft process. The results have strong positive implications for the industrial application of GO membranes in BL concentration and other related applications.

Journal articles
Magazine articles
Open Access
Gas dispersion in the oxygen delignification process, TAPPI Journal May 2021

ABSTRACT: There has been very little knowledge about the state of gas dispersion in the oxygen delignification process, even though this has a major impact on the performance of the reactor. This paper presents a new continu-ous inline method for measuring oxygen bubble size distribution in the reactor, as well as results from studies con-ducted in softwood and hardwood lines. This new measurement worked well, and new information about oxygen bubble size, as well as how different reactor conditions affected the distribution, was obtained. For example:œ In the softwood line, the mean volume-weighted bubble size was about 0.1 mm, whereas in the hardwood line, this size was almost 10 times higher. For both lines, there was considerable variation in the measured bubble size over the long term.œ For both lines, an increase in mixer rotation speed caused a discernible decrease in the bubble size, and an increase in oxygen charge caused a discernible increase in the bubble size.œ In the softwood line, no coalescence of the bubbles in the reactor was observed, but in the hardwood line, some coalescence of the larger bubbles occurred.œ In the test conducted in the hardwood line, the use of brownstock washer defoamer caused a discernible increase in oxygen bubble size.œ In the hardwood line, reactor pressure had a noticeable effect on the amount of delignification, which indicated that improving mass transfer of oxygen (e.g., by decreasing the oxygen bubble size, in this case) should also have an increasing effect on the delignification.