Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Committees
Collections
Journal articles
Magazine articles
Pulp and paper mills: The original biorefineries — past performance and limitations to future opportunities, TAPPI Journal October 2023
ABSTRACT: Pulp mills have been biorefineries since the invention of the Tomlinson recovery boiler. Unfortunately, the paper industry has done a poor job explaining that concept to the general public. A number of bioproducts in everyday use have been produced by pulp mills for several decades, and new products are routinely being developed. Modern research efforts over the last couple of decades have focused on producing even more products from pulp and paper mills through capacity enhancement and the development of value-added products and liquid transportation fuels to enhance paper mill profitability. Some of these efforts, often referred to as modern biorefineries, have focused so heavily on product development that they have ignored operating and process realities that limit the transformation of pulp and paper mills from the current limited number of bioproducts produced today to economic scale production of these value-added products. In this paper, several of these limitations are addressed. In addition, there are several supply chain, marketing, product quality, and economic realities limiting the value potential for these wholesale conversions of pulp mills into multiproduct modern biorefineries. Finally, the conservative nature and capital intensity of the pulp and paper industries provide a difficult hurdle for conversion to the modern biorefinery concept. These issues are also reviewed.
Journal articles
Materials performance considerations in hydrothermal liquefaction conversion of biomass, TAPPI Journal June 2025
ABSTRACT: Hydrothermal liquefaction (HTL) is a promising thermochemical route developed to convert woody biomass and biowaste to biochemicals and bio-oils. However, the operating conditions are rather harsh to biorefinery structural metallic components. These conditions include alkaline catalysts such as potassium carbonate (K2CO3); hot, pressurized (sub-critical) water reaction; and medium and aggressive anions chlorine (Cl•) and hydrogen sulfide (H•) released from biomass feedstocks. Thus, selection of suitable structural alloys for biorefinery components involves striking a balance between mechanical properties, corrosion resistance, and cost. Alloys currently being considered for this application include ferritic-martensitic steels and austenitic stainless steels. From a corrosion perspective in hot pressurized water, the former typically exhibits higher stress corrosion cracking resistance, whereas the latter exhibits higher corrosion resistance. This study reviews cost-effective corrosion control strategies aimed at increasing the chromium (Cr) content for protective surface oxide formation, as screened by testing in simulated HTL alkaline water, to support materials selection and design. Corrosion control strategies include surface modification (increasing surface Cr content), alloying (increasing bulk Cr content), and stainless-steel type (ferritic vs. austenitic). Of the alloys considered (including those subjected to surface modification), ferritic stainless steels exhibit a promising balance between corrosion and stress corrosion cracking resistance, adding another family of candidate alloys for structural biorefinery component materials selection and design.
Journal articles
Magazine articles
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal Octobr 2021
ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.
Journal articles
Magazine articles
Experiments and visualization of sprays from beer can and turbo liquor nozzles, TAPPI Journal February 2022
ABSTRACT: Industrial scale swirl-type black liquor nozzles were studied using water as the test fluid. Simple water spraying experiments were found to be very beneficial for studying and comparing nozzles for black liquor spraying. These kinds of experiments are important for finding better nozzle designs. Three nozzle designs were investigated to understand the functional differences between these nozzles. The pressure loss of nozzle 1 (“tangential swirl”) and nozzle 3 (“turbo”) were 97% and 38% higher compared to nozzle 2 (“tan-gential swirl”). Spray opening angles were 75°, 60°, and 35° for nozzles 1, 2, and 3, respectively. Video imaging showed that the nozzles produced sprays that were inclined a few degrees from the nozzle centerline. Spray patter-nation showed all the sprays to be asymmetric, while nozzle 2 was the most symmetric. Laser-Doppler measure-ments showed large differences in spray velocities between nozzles. The spray velocity for nozzle 1 increased from 9 m/s to 15 m/s when the flow rate was increased from 1.5 L/s to 2.5 L/s. The resulting velocity increase for nozzle 2 was from 7 m/s to 11 m/s, and for nozzle 3, it was from 8 m/s to 13 m/s. Tangential flow (swirl) directed the spray 6°•12° away from the vertical plane. Liquid sheet breakup mechanisms and lengths were estimated by analyzing high speed video images. The liquid sheet breakup mechanism for nozzle 1 was estimated to be wave formation, and the sheet length was estimated to be about 10 cm. Sheet breakup mechanisms for nozzle 2 were wave formation and sheet perforation, and the sheet length was about 20 cm. Nozzle 3 was not supposed to form a liquid sheet. Nozzle geometry was found to greatly affect spray characteristics.
Journal articles
Magazine articles
Dynamic out-of-plane compression of paperboard — Influence of impact velocity on the surface, TAPPI Journal February 2024
ABSTRACT: Processes that convert paperboard into finished products include, for example, printing, where the paperboard is subjected to rapid Z-directional (ZD) compression in the print nip. However, measuring and evaluating the relevant properties in the thickness direction of paperboard are not necessarily straightforward or easy. Measuring at relevant, millisecond deformation rates further complicates the problem. The aim of the present work is to elucidate some of the influences on the compressive stiffness. Both the initial material response and the overall compressibility of the paperboard is studied. In this project, the effect on the material response from the surface structure and the millisecond timescale recovery is explored.The method utilized is a machine called the Rapid ZD-tester. The device drops a probe in freefall on the substrate and records the probe position, thus acquiring the deformation of the substrate. The probe is also allowed to bounce several times on the surface for consecutive impacts before being lifted for the next drop. To investigate the time dependent stiffness behavior, the probe is dropped several times at the same XY position on the paperboard from different heights, thus achieving different impact velocities. The material response from drops and bounces combined allows study of the short-term recovery of the material. The material in the study is commercial paperboard. The paperboard samples are compared to material where the surface has been smoothed by grinding it. Our study shows that there is a non-permanent reduction in thickness and a stiffening per bounce of the probe, indicating a compaction that has not recovered in the millisecond timescale. Additionally, a higher impact velocity has an initial stiffening effect on the paperboard, and this is reduced by smoothing the surface.
Journal articles
Magazine articles
Effects of carboxymethyl starch as a papermaking additive, TAPPI Journal February 2024
ABSTRACT: Carboxymethyl starch (CMS) is a bio-based, anionic polymer that has potential as part of a dry-strength additive program for papermaking. Due to its negative charge, its effects can be expected to depend on its interactions with various cationic agents. In this work, the effects of CMS were observed following its sequential addition after one of three selected cationic strength agents at different dosage levels. In selected tests, the furnish was pretreated at the 1% level by a dispersant, sodium polyacrylate, which might represent a high level of anionic contaminants in a paper mill system. Laboratory tests were conducted to show the effects on dewatering, fine-particle retention, and flocculation. These tests were supplemented with measurements of charge demand, zeta potential, and handsheet properties. Sequential addition of cationic glyoxylated acrylamide copolymers (gPAM) and CMS were found to strongly promote dewatering. Two gPAM products and a poly(vinylamine) product in sequential addition with CMS were very effective for promoting fine-particle retention. These same sequential treatments of the stock contributed to moderate fiber flocculation, though severe flocculation was caused by further treatment of the furnish with colloidal silica. Handsheet strength results were mixed. In the default recycled copy paper furnish, the average breaking length for the sheets made with cationic additives followed by CMS was not greatly different from the blank condition. Superior strength resulted when the default furnish was treated with a dispersant alone. When the dispersant-contaminated furnish was treated with the same combinations of cationic additives and CMS, the strength returned to the baseline achieved in the absence of the dispersant. The results were discussed in terms of the charged character of the different additives and their interactions not only with the fiber surfaces but also with each other.
Journal articles
Magazine articles
Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of su
Kinetics of sulfur dioxide-alcohol-water (SAW) pulping of sugarcane straw (SCS), TAPPI JOURNAL June 2017
Journal articles
Magazine articles
Numerical analysis of the impact of rotor and screen hole plate design on the performance of a vertical pulper, TAPPI Journal April 2025
ABSTRACT: The dissolving of mechanical pulp is one of the most important process steps in stock preparation, since pulping occurs at the very beginning of the papermaking process. Efficient mixing of the pulp in a short amount of time is essential to achieve high furnish volume flow rates. The design of the rotor, as well as the pulper vat and inserts, significantly affects the overall performance of the pulper, such as mixing efficiency and power demand. Using advanced numerical methods such as computational fluid dynamics (CFD) can accelerate the development process. The CFD simulations allow for detailed analysis of flow phenomena, making it possible to study a real-size machine numerically. This approach is particularly advantageous because it can reduce the need for timeconsuming and costly experiments associated with scaling up test rigs. In this study, we compared two different rotor designs utilized in a vertical pulper and evaluated the numerical results with experimental data. Rotor A is designed for low turbulence and low power demand, while rotor B is designed for high turbulence with high power demand. The CFD results showed good agreement with the experimental measurements. We investigated how the rotor design influences the free fluid surface and the mixing efficiency. Our study also highlights the differences in results depending on whether water or furnish is simulated, which exhibit Newtonian or, respectively, non-Newtonian fluid behavior. Additionally, a detailed numerical investigation of various screen hole plate designs revealed that the newly developed hole design significantly reduces pressure loss compared to a standard drilled hole. This outcome was consistent for both types of fluids investigated: water and furnish.
Journal articles
Magazine articles
Effects of different soda loss measurement techniques on brownstock quality, TAPPI Journal July 2024
ABSTRACT: The efficiency of the kraft recovery plant, bleaching process, and paper machine are affected when black liquor carryover from the brownstock washers is not controlled well. Measuring soda loss within a mill can vary from using conductivity, either in-situ or with a lab sample of black liquor filtrate squeezed from the last stage washer, to measuring absolute sodium content with a lab sodium specific ion probe or spectrophotometer. While measuring conductivity has value in tracking trends in black liquor losses, it is not an acceptable method in reporting losses in absolute units, typically in lb/ton of pulp. This is further complicated when trying to benchmark soda loss performance across a fleet of mills with multiple washer lines. Not only do the testing methods vary, but the amount of bound soda on high kappa pulps can be significant. This variability creates inconsistent results, and studies are needed to understand the effect of different testing methods on the pulp quality. In this study, soda loss is expressed as sodium sulfate (Na2SO4). Four different methods to measure soda content in pulp off commercial brownstock washers were studied: full digestion (FD), washing soaking overnight and washing (WSW), soaking in boiling water and stirring 10-min (SW-10), and squeeze-no wash (Sq). Total, washable, and bound sodium sulfate calculations were determined for each soda content measuring technique using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results showed bound and washable sodium sulfate amounts significantly depend on which soda measurement technique was used. In addition, the soda results were correlated with the pulp kappa numbers. As the kappa number increases, bound soda increases, regardless of the soda measurement method used. Impacts of high sodium sulfate in brownstock are also discussed.
Journal articles
Magazine articles
Understanding the energy and emission implications of new technologies in a kraft mill: Insights from a CADSIM Plus simulation model, TAPPI Journal June 2024
ABSTRACT: Kraft mills play a vital role in energy transition because they have significant potential to reduce their own energy utilization and produce energy/products to decarbonize other sectors. Through biomass combustion and potential biogenic carbon emissions capture, these mills can contribute to offsetting emissions from other sectors. This research investigates the departmental and cross-departmental implications of technology upgrades on energy, steam, emissions, water, and chemicals using a CADSIM Plus simulation model. The model provides a comprehensive analysis of mass and energy balances, offering valuable insights into the benefits and limitations of each technology. The model facilitates scenario analysis and comparisons of process configurations, enabling data-driven decision-making for sustainable and competitive operations. Six high-impact technologies, including additional evaporator effects, weak black liquor membrane concentration, belt displacement washer for brownstock washing, oxygen delignification, and improvements to the pulp machine shoe press and vacuum pumps, are evaluated. Individual technologies resulted in energy savings of 1.2% to 5.4%, biomass consumption reductions of 8.6% to 31.6%, and total emissions reductions of 1.6% to 5.9%. Strategic decision-making must consider existing mill limitations, future technology implementation, and potential production increases. Future research will explore product diversification, biorefineries, and pathways to achieve carbon-negative operations, aiming to reduce emissions and secure a competitive future for kraft mills.