Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Editorial: Industry coating expert Gregg Reed joins TAPPI Journal editorial board, TAPPI Journal Nov
ABSTRACT: TAPPI and the TAPPI JOURNAL (TJ) editorial staff would like to welcome a new member to the TJ editorial board, Gregg Reed, Ph.D., technical support leader at Imerys in Gray, GA. In his current position, Gregg develops new mineral and specialty coating products for paper and packaging applications and manages customer requests, including pilot trials. He also supervises the activities of technicians and chemists in the laboratory.
Journal articles
Magazine articles
Influence of pallet pattern on top-to-bottom compression performance of unitized loads, TAPPI Journal
ABSTRACT: Environmental scaling factors estimate a corrugated container’s ability to withstand various conditions it will encounter during the storage and distribution process. In this project, we examined the compressive resistance of unitized loads using differing pallet stacking patterns. To simulate real-world failure scenarios in our laboratory tests, we used two different nominal board grades of single-wall C-flute regular slotted containers loaded with a plywood panel and bagged salt to direct the failure location to the bottom of the stack. Our results showed that the columnar aligned pattern provided the greatest compressive resistance and the interlocked stacking arrangement yielded the lowest of the patterns evaluated. Based on the study results, we calculated box compression retention multipliers for each pattern and compared them to scaling factors published by the Fibre Box Association.
Journal articles
Magazine articles
An evaluation of household tissue softness, TAPPI Journal February 2021
ABSTRACT: This study extends our 2019 paper, a study of the softness of household tissues using a tissue softness analyzer (TSA) and hand-felt panels. It revisits the softness theory of Holger Hollmark by applying a reciprocal matrix approach to measure sheet bulk softness and surface softness, and then make comparisons with the results obtained using a TSA instrument. We ascertained that there was a high correlation of R=0.904 between panel-corrected hand-felt (CHF) softness and TSA softness (TSA-HF); and a low correlation of R=-0.678 between panel-corrected hand-felt surface softness (CHSS) and TSA smoothness (TS-750). Three hunches about TSA measurements were confirmed: 1) Hollmark’s theory was confirmed by a high correlation coefficient (R=0.895) between CHF and CHSS softness, indicating that the two parameters are mutually dependent; 2) TS-750 differs from CHSS and has partial influence on TSA-HF results with a correlation of R = -0.510; and 3) although TS-750 has only limited influences on TSA-HF, further opportunities for their application can be provided using pertinent regression equations.
Journal articles
Magazine articles
Rheological behavior of magnetic pulp fiber suspensions, TAPPI Journal June 2021
ABSTRACT: This paper is focused on the rheology of magnetic pulp suspensions in absence and presence of an external magnetic field. Magnetic fibers were prepared by the lumen loading method using bleached eucalyptus fibers and cobalt ferrite (CoFe2O4) nanoparticles. The effect of mass consistency, temperature, concentration of magnetic fibers, and magnetic field strength on yield stress and apparent viscosity of the suspensions were investigated. In the absence of an applied field, a dependence of yield stress with consistency, as well as with the percentage of magnetic fibers present in the suspension, was found. In flow tests, all the suspensions exhibited shear-thinning behavior, showing that the viscosity is only affected by the consistency of the suspension. On the other hand, magnetorheological measurements show a negative effect of the applied magnetic field on the viscosity of the suspension.
Journal articles
Magazine articles
A discrete element method to model coating layer mechanical properties with bimodal and pseudo-full particle size distributions, TAPPI Journal July 2023
ABSTRACT: The mechanical properties of paper coating layers are important in converting operations such as calendering, printing, and folding. While several experimental and theoretical studies have advanced our knowledge of these systems, a particle level understanding of issues like crack-at-the-fold are lacking.A discrete element method (DEM) model is used to describe bending and tension deformations of a coating layer. The particles in the model are either bimodal distributions or pseudo-full particle size distributions of spherical particles. The impact of particle size distribution on the predicted mechanical properties of the coating layer is reported. Inputs to the model include properties of the binder film and the binder concentration. The model predicts crack formation as a function of these parameters and also calculates the modulus, the maximum stress, and the strain-to-failure. The simulation results are compared to previous experimental results. Reasonable predictions were obtained for both tensile and bending for a range of latex-starch ratios and at various binder concentrations. The influence of particle packing density on mechanical properties is reported.
Journal articles
Magazine articles
External fibrillation of wood pulp, TAPPI Journal June 2023
ABSTRACT: Pulp refining produces external fibrillation consisting of fibrils tethered to fiber surfaces, in addition to loose fibrils and fines. Both contribute to a larger bonding area that increases paper strength, but tethered fibrils have less likelihood of being washed out during papermaking. This study postulates the mechanism by which refining produces external fibrillation and the optimum conditions for doing so.The postulated mechanism is surface abrasion during sliding of fibers in refiner gaps. External fibrillation occurs when forces are great enough to partially dislodge fibrils from fiber surfaces, but not large enough to break the fibrils. The refining intensities to achieve these forces were determined by a mathematical model and experiments using a laboratory disc refiner. The optimum intensities in terms of specific edge load (SEL) for chemical pulps were about 0.1 J/m for hardwoods and 1.0 J/m for softwoods. An extension of this study suggested that abrasion may also account for most of the energy consumed in the mechanical pulping process.
Journal articles
Magazine articles
Contrasting underlying mechanisms of different barrier coating types, TAPPI Journal January 2018
Contrasting underlying mechanisms of different barrier coating types, TAPPI Journal January 2018
Journal articles
Magazine articles
Lignin — a promising biomass resource, TAPPI JOURNAL March 2018
Lignin — a promising biomass resource, TAPPI JOURNAL March 2018
Journal articles
Magazine articles
Discrete element method to model cracking for two layer systems, TAPPI Journal February 2019
Discrete element method to model cracking for two layer systems, TAPPI Journal February 2019
Journal articles
Magazine articles
Formation mechanisms of “jellyroll” smelt in kraft recovery
Formation mechanisms of “jellyroll” smelt in kraft recovery boilers, TAPPI JOURNAL October 2017